福田の一夜漬け数学〜順列・組合せ(2)〜一列に並べる(前編) - 質問解決D.B.(データベース)

福田の一夜漬け数学〜順列・組合せ(2)〜一列に並べる(前編)

問題文全文(内容文):
${\Large\boxed{1}}$ A,B,C,D,E,F,Gを一列に並べる。
(1)AとBが両端にくるような並び方は何通りあるか。
(2)A,B,Cが隣り合うような並び方は何通りあるか。
(3)A,B,Cが隣り合わないような並び方は何通りあるか。
(4)A,B,Cがこの順に並ぶような並び方は何通りあるか。
(5)この順列を辞書順に並べたとき、CBFDAGEは何番目か。
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ A,B,C,D,E,F,Gを一列に並べる。
(1)AとBが両端にくるような並び方は何通りあるか。
(2)A,B,Cが隣り合うような並び方は何通りあるか。
(3)A,B,Cが隣り合わないような並び方は何通りあるか。
(4)A,B,Cがこの順に並ぶような並び方は何通りあるか。
(5)この順列を辞書順に並べたとき、CBFDAGEは何番目か。
投稿日:2018.06.23

<関連動画>

【数A】ガラガラくじって何番目に引くのが有利なの??

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
n個のくじがあり、この中であたりは一つだけあります。
n人が一回ずつくじをひいたとき(ひいたくじは戻さない)この時、何番目にひいた人が一番当たる確率が高いですか?
この動画を見る 

福田の共通テスト解答速報〜2022年共通テスト数学IA問題3。プレゼントの交換の確率の問題。

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
第3問\ 複数人がそれぞれプレゼントを一つずつ持ち寄り、交換会を開く。ただし、プレゼントは
全て異なるとする。
プレゼントの交換は次の手順で行う。
手順:外見が同じ袋を人数分用意し、各袋にプレゼントを一つずつ入れたうえで、
各参加者に袋を一つずつでたらめに配る。各参加者は配られた袋の中の
プレゼントを受け取る。

交換の結果、1人でも自分の持参したプレゼントを受け取った場合は、交換をやり直す。
そして、全員が自分以外の人の持参したプレゼントを受け取ったところで交換会を終了する。
(1)2人または3人で交換会を開く場合を考える。
$(\textrm{i})$2人で交換会を開く場合、1回目の交換で交換会が終了するプレゼントの受け取り方は
$\boxed{ア}$通りある。したがって1回目の交換で交換会が終了する確率は$\frac{\boxed{イ}}{\boxed{ウ}}$である。
$(\textrm{ii})$3人で交換会を開く場合、1回目の交換で交換会が終了するプレゼントの受け取り方は
$\boxed{エ}$通りある。したがって1回目の交換で交換会が終了する確率は$\frac{\boxed{オ}}{\boxed{カ}}$である。
$(\textrm{iii})$3人で交換会を開く場合、4回以下の交換で交換会が終了する確率は$\frac{\boxed{キク}}{\boxed{ケコ}}$である。

(2)4人で交換会を開く場合、1回目の交換で交換会が終了する確率を
次の構想に基づいて求めてみよう。
構想:1回目の交換で交換会が終了しないプレゼントの受け取り方の総数を求める。
そのために、自分の持参したプレゼントを受け取る人数によって場合分けをする。

1回目の交換で、4人のうち、ちょうど1人が自分の持参したプレゼントを受け取る場合は
$\boxed{サ}$通りあり、ちょうど2人が自分のプレゼントを受け取る場合は$\boxed{シ}$通りある。
このように考えていくと、1回目のプレゼントの受け取り方のうち、1回目の交換で交換会が
終了しない受け取り方の総数は$\boxed{スセ}$である。
したがって、1回目の交換で交換会が終了する確率は$\frac{\boxed{ソ}}{\boxed{タ}}$である。

(3)5人で交換会を開く場合、1回目の交換で交換会が終了する確率は$\frac{\boxed{チツ}}{\boxed{テト}}$である。
\(4)A,B,C,D,Eの5人が交換会を開く。1回目の交換でA,B,C,Dがそれぞれ自分以外
の人の持参したプレゼントを受け取った時、その回で交換会が終了する
条件付き確率は$\frac{\boxed{ナニ}}{\boxed{ヌネ}}$である。

2022共通テスト数学過去問
この動画を見る 

福田の一夜漬け数学〜順列・組合せ(8)〜整数解の個数

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 次の式を満たす整数の組($x,y,z$)の個数を求めよ。
(1)$x+y+z=9$ ($x,y,z$は$0$以上の整数)
(2)$x+y+z=9$ ($x,y,z$は自然数)
(3)$x+y+z \leqq 9$ ($x,y,z$は$0$以上の整数)
(4)$x+y+z \leqq 9$ ($x \geqq 1,y \geqq 0,z \geqq 0$)
この動画を見る 

福田のわかった数学〜高校1年生080〜場合の数(19)道順(5)

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 場合の数(17) 道順(5)
図(※動画参照)のように立方体ABCD-EFGHの各面が3×3の正方形となるような
碁盤の目状に区切られた図形がある。点Aから点Gまで辺上を通って最短経路で行く
方法は何通りあるか。
この動画を見る 

数学「大学入試良問集」【5−2 確率と円順列】を宇宙一わかりやすく

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#場合の数#確率#学校別大学入試過去問解説(数学)#数学(高校生)#大阪市立大学#大阪市立大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$n$を2以上とし、$n$組の夫婦が、$2n$人掛の円卓に着席するものとする。
着席位置を無作為に決めるとき、次の問いに答えよ。
(1)男女が交互に着席する確率を求めよ。
(2)どの夫婦も隣り合わせに着席する確率を求めよ。
(3)男女が交互になり、かつ、どの夫婦も隣り合わせに着席する確率を求めよ。
この動画を見る 
PAGE TOP