【数Ⅱ】図形と方程式:x²+y²+4x-6y+13=0はどのような図形を表しているでしょう? - 質問解決D.B.(データベース)

【数Ⅱ】図形と方程式:x²+y²+4x-6y+13=0はどのような図形を表しているでしょう?

問題文全文(内容文):
$x^2+y^2+4x-6y+13=0$はどのような図形を表しているか?
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
教材: #高校ゼミスタンダード#高校ゼミスタンダード数Ⅱ#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$x^2+y^2+4x-6y+13=0$はどのような図形を表しているか?
投稿日:2021.01.03

<関連動画>

数学「大学入試良問集」【11−1 円と直線の位置関係】を宇宙一わかりやすく

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#数学(高校生)#南山大学
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
平面上に、原点$O$を中心とする半径1の円$C$と、点$(3,0)$を通る傾き$m$の直線$l$がある。
(1)$l$と$c$が異なる2点$A,B$で交わるとき、$m$の値の範囲を求めよ。
(2)三角形$OAB$の面積が$\displaystyle \frac{1}{2}$のときの$m$を求めよ。
この動画を見る 

【高校数学】 数Ⅱ-67 円と直線の共有点③

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①円$x^2+y^2=1$と直線$y=x+k$が共有点をもつとき、定数kの値の範囲を求めよう。

②直線$4x-3y-4=0$が円$(x-3)^2+(y-1)^2=2$によって切り取られる弦の長さを求めよう。
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜円の方程式(11)円群と共通弦、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 2つの円$x^2+y^2=4$ $\cdots$①と$x^2+y^2+4x-2y+4=0$ $\cdots$②について、
(1)2つの円は、異なる2点で交わることを示せ。
(2)2つの円の交点を通る直線の方程式を求めよ。
(3)2つの円の交点と原点を通る円の方程式を求めよ。

${\Large\boxed{2}}$ 中心$(a,b),$半径2の円と円$x^2+y^2=9$ $\cdots$①との2つの共有点を通る直線
の方程式が$6x-2y-15=0$となるような点$(a,b)$を求めよ。
この動画を見る 

福田の数学〜東京理科大学2022年理工学部第1問(2)〜三角方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#三角関数#円と方程式#加法定理とその応用#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(2)角θに関する方程式
$\cos 4θ=\cos θ(0\leqq θ\leqq \pi)$
について考える。①を満たすθは小さい方から順に
$θ=0,\frac{\boxed{キ}}{\boxed{ク}}\pi,\frac{\boxed{ケ}}{\boxed{コ}}\pi,\frac{\boxed{サ}}{\boxed{シ}}\pi$
の4つである。一方、θが①を満たすとき、$t=\cos θ$とおくとtは
$\boxed{ス}t^4 - \boxed{セ}t^2+\boxed{ソ}=t$
を満たす。$t=1,\cos \frac{\boxed{ケ}}{\boxed{コ}}\pi$は②の解なので、2次方程式
$\boxed{タ}t^2+\boxed{チ}t-1=0$
は$\cos \frac{\boxed{キ}}{\boxed{ク}}\pi,\cos \frac{\boxed{サ}}{\boxed{シ}}\pi$を解にもつ。これより、
$\cos \frac{\boxed{キ}}{\boxed{ク}}\pi=\frac{\sqrt{\boxed{ツ}}-\boxed{テ}}{\boxed{ト}},\cos \frac{\boxed{サ}}{\boxed{シ}}\pi=-\frac{\sqrt{\boxed{ツ}}+\boxed{テ}}{\boxed{ト}}$であることが分かる。
この動画を見る 

【高校数学】 数Ⅱ-62 円と直線①

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の円の方程式を求めよう。

①中心が(1、2)、半径が3

②中心が原点、半径が4

③中心が(-1.2)で原点を通る

④中心が(-2.3)でX軸に接する

⑤中心が(4.-1)で点(1.1)を通る

⑥直径の両端が(-1.3). (1.-5)
この動画を見る 
PAGE TOP