【数Ⅱ】微分法と積分法:立体図形の見方・捉え方を千葉大の過去問の類題を例に説明します!! - 質問解決D.B.(データベース)

【数Ⅱ】微分法と積分法:立体図形の見方・捉え方を千葉大の過去問の類題を例に説明します!!

問題文全文(内容文):
四面体OABCにおいて、$OA=OB=OC=1、∠BAC=90°$のとき、この四面体の体積Vの最大値を求めよ。
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
教材: #7つの大解法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
四面体OABCにおいて、$OA=OB=OC=1、∠BAC=90°$のとき、この四面体の体積Vの最大値を求めよ。
投稿日:2020.08.22

<関連動画>

東工大 積分 放物線と直線 面積最小値 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分法と積分法#点と直線#学校別大学入試過去問解説(数学)#不定積分・定積分#東京工業大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=-2x^2+x+1$上の1点における接線と$y=x^2$とによって囲まれる部分の面積の最小値を求めよ。

出典:1967年 東京工業大学 過去問
この動画を見る 

大学入試問題#898「教科書例題」 #千葉大学(2024)

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#不定積分・定積分#千葉大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
次の等式を満たす$x \gt 0$で定義された関数$f(x)$と定数$a$の値を求めよ。
ただし、$a \gt 0$とする。
$\displaystyle \int_{a}^{x} f(t) dt=x+\displaystyle \frac{1}{2}log$ $x-1$

出典:2024年千葉大学
この動画を見る 

#茨城大学2024#定積分_7#元高校教員

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#茨城大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1} e^x(e^{2x}+\frac{1}{e^{2x}}) dx$

出典:2024年茨城大学
この動画を見る 

学習院大 整式の剰余 積の微分公式証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#微分法と積分法#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#学習院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^n-1$を$(x-1)^2$で割った余りを求めよ

出典:学習院大学 過去問
この動画を見る 

福田の数学〜浜松医科大学2023年医学部第2問〜定積分と極限とグラフ

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#浜松医科大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
医療で使われる技術の1つとして、磁気共鳴画像法 (MRI) がある。
MRI は画像の濃淡を表す関数、例えば

$M(x)=\displaystyle \lim_{ n \to \infty } I_n(x) $ (xは実数)

を用いて体内の様子を可視化する技術である。 ここで $I_n(x) $ は

$I_n(x) = \displaystyle \int_0^n e^{ -t }cos(tx)dt $
(n=1, 2, 3, ...)である。以下の問いに答えよ。

(1) 定積分$I_n(x) $を求めよ。

(2) $M(x)=\displaystyle \lim_{ n \to \infty } I_n(x) $ を求めよ

2023浜松医科大学医過去問


(3) 関数 $y= M(x)$ について、増減、極値、グラフの凹凸および変曲点を調べて、そのグラフをかけ。
この動画を見る 
PAGE TOP