【数C】【複素数平面】複素数と図形3 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数C】【複素数平面】複素数と図形3 ※問題文は概要欄

問題文全文(内容文):
zが、原点Oを中心とする半径1の円上を動くとき、次の点wはどのような図形を描くか。
(1) w=1+iz (2) w=6z12z1
チャプター:

0:00 オープニング
0:04 半径1の円と複素数
2:05 (1)を解く!
5:33 (2)を解く!
10:00 エンディング

単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
zが、原点Oを中心とする半径1の円上を動くとき、次の点wはどのような図形を描くか。
(1) w=1+iz (2) w=6z12z1
投稿日:2025.03.09

<関連動画>

福田の一夜漬け数学〜数学III 複素数平面〜京都大学の問題に挑戦

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
1 w0でない複素数、x,yw+1w=x+yiを満たす実数とする。
(1)実数RR>1を満たす定数とする。wが絶対値Rの複素数
全体を動くとき、xy平面上の点(x, y)の軌跡を求めよ。

(2)実数α0<α<π2を満たす定数とする。wが偏角αの複素数
全体を動くとき、xy平面上の点(x, y)の軌跡を求めよ。

京都大学過去問
この動画を見る 

福田の一夜漬け数学〜数学III 複素数平面〜点の軌跡(1)

アイキャッチ画像
単元: #数Ⅱ#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
点zが次の方程式を満たすとき、点zはどのような図形を描くか。
(1)|z1|=|z+i|
(2)|2z1i|=4
(3)|2z¯1+i|=4
(4)|z+2|=2|z1|
この動画を見る 

福田の一夜漬け数学〜数学III 複素数平面〜三角形の形状(2)

アイキャッチ画像
単元: #複素数平面#複素数平面#図形への応用#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
1 異なる3点A(α),B(β),C(γ)
α+β+γ=α2+β2+γ2=0
を満たす。ABCはどのような三角形か。
この動画を見る 

【数C】【複素数平面】複素数と図形7 ※問題文は概要欄

アイキャッチ画像
単元: #複素数平面#図形への応用#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
原点をO,α=2i,β=3+(2a1)iを表す点をそれぞれA,Bとするとき、AOB=π4を満たす実数aの値を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2023年医学部第4問PART1〜円に内接する円の性質

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#複素数平面#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#円と方程式#微分とその応用#複素数平面#図形への応用#微分法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
4 座標平面において原点Oを中心とする半径1の円をC1とし、C1の内部にある第1象限の点Pの極座標を(r, θ)とする。さらに点Pを中心とする円C2C1上の点QにおいてC1に内接し、x軸上の点Rにおいてx軸に接しているとする。
また、極座標が(1, π)であるC1上の点をAとし、直線AQのy切片をtとする。
(1)rをθの式で表すとr=    となり、tの式で表すとr=    となる。
(2)円C2と同じ半径をもち、x軸に関して円C2と対称な位置にある円C2の中心P'とする。三角形POP'の面積はθ=    のとき最大値    をとる。θ=    は条件t=    と同値である。
(3)円C1に内接し、円C2C2の両方に外接する円のうち大きい方をC3とする。円C3の半径bをtの式で表すとb=    となる。
(4)3つの円C2, C2, C3の周の長さの和はθ=    の最大値    をとる。

2023慶應義塾大学看護医療学部過去問
この動画を見る 
PAGE TOP preload imagepreload image