【高校数学】 数Ⅱ-93 三角関数の性質④ - 質問解決D.B.(データベース)

【高校数学】 数Ⅱ-93 三角関数の性質④

問題文全文(内容文):
◎次の値を求めよう。
①$\sin \displaystyle \frac{4}{3}π$

②$\cos \displaystyle \frac{11}{6}π$

③$\tan \displaystyle \frac{7}{6}π$

[ポイント]
$\sin (\displaystyle \frac{π}{2}+\theta)=$④____

$\cos (\displaystyle \frac{π}{2}+\theta)=$⑤____

$\tan (\displaystyle \frac{π}{2}+\theta)=$⑥____

$\sin (\displaystyle \frac{π}{2}-\theta)=$⑦____

$\cos (\displaystyle \frac{π}{2}-\theta)=$⑧____

$\tan (\displaystyle \frac{π}{2}-\theta)=$⑨____

$\sin (π-\theta)=$⑩____

$\cos (π-\theta)=$⑪____

$\tan (π-\theta)=$⑫____
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の値を求めよう。
①$\sin \displaystyle \frac{4}{3}π$

②$\cos \displaystyle \frac{11}{6}π$

③$\tan \displaystyle \frac{7}{6}π$

[ポイント]
$\sin (\displaystyle \frac{π}{2}+\theta)=$④____

$\cos (\displaystyle \frac{π}{2}+\theta)=$⑤____

$\tan (\displaystyle \frac{π}{2}+\theta)=$⑥____

$\sin (\displaystyle \frac{π}{2}-\theta)=$⑦____

$\cos (\displaystyle \frac{π}{2}-\theta)=$⑧____

$\tan (\displaystyle \frac{π}{2}-\theta)=$⑨____

$\sin (π-\theta)=$⑩____

$\cos (π-\theta)=$⑪____

$\tan (π-\theta)=$⑫____
投稿日:2015.08.02

<関連動画>

ドモアブルの定理の証明と応用

アイキャッチ画像
単元: #数Ⅱ#三角関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は整数である.
$Z=\sin\theta+i\cos\theta$
$Z^n$を$\cos n\theta$と$\sin n\theta$を用いて表せ.

2021京都工芸大過去問
この動画を見る 

立命館(文系)複素数の計算

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#大学入試過去問(英語)#立命館大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^6=1$の4つの虚数解のうちの1つを$\alpha$とする.
$(1-\alpha)(1-\alpha^3)(1-\alpha^5)$の値は$\Box$か$\Box$か.

立命館大(文系)過去問
この動画を見る 

式の値

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$a+\displaystyle \frac{1}{a}=45$のとき、
$\displaystyle \frac{a^2}{a^4-a^2+1}=?$
この動画を見る 

対数の基本

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023横浜市立(医・理)
$
\\
2^{log_49}の値
$
この動画を見る 

注意ポイントあり!定数分離の良問です【数学 入試問題】【北海道大学】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
関数 $f(\theta)=\dfrac{1}{\sqrt 2}sin2 \theta-sin \theta+cos\theta$ ($0≦\theta≦\pi)$を考える。

(3)$a$を実数の定数とする。

$f(\theta)=a$となる$\theta$がちょうど2個であるような$a$のい範囲を求めよ。

北海道大過去問
この動画を見る 
PAGE TOP