福田の数学〜青山学院大学2024理工学部第4問〜3項間漸化式の解法 - 質問解決D.B.(データベース)

福田の数学〜青山学院大学2024理工学部第4問〜3項間漸化式の解法

問題文全文(内容文):
初項が $1$、第10項が $3$ である数列 $\{a_n\}$ が
\begin{equation*}
a_{n+2}-3a_{n+1}+2a_n+1=0 \quad (n=1,2,3,\ldots)
\end{equation*}
を満たしている。$b_n=a_{n+1}-a_n \ (n=1,2,3,\ldots)$ とおくとき、以下の問いに答えよ。
$(1)$ $b_{n+1}$ を $b_n$ を用いて表せ。
$(2)$ $b_n$ を $n$ と $b_1$ を用いて表せ。
$(3)$ $b_1$ を求めよ。
$(4)$ 数列 $\{a_n\}$ の一般項を求めよ。
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
初項が $1$、第10項が $3$ である数列 $\{a_n\}$ が
\begin{equation*}
a_{n+2}-3a_{n+1}+2a_n+1=0 \quad (n=1,2,3,\ldots)
\end{equation*}
を満たしている。$b_n=a_{n+1}-a_n \ (n=1,2,3,\ldots)$ とおくとき、以下の問いに答えよ。
$(1)$ $b_{n+1}$ を $b_n$ を用いて表せ。
$(2)$ $b_n$ を $n$ と $b_1$ を用いて表せ。
$(3)$ $b_1$ を求めよ。
$(4)$ 数列 $\{a_n\}$ の一般項を求めよ。
投稿日:2024.09.15

<関連動画>

15和歌山県教員採用試験(数学:4番 帰納法)

アイキャッチ画像
単元: #数列#数学的帰納法#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$
$n \gets IN$
$3^n$と$5n+2$の大小を比較せよ.
この動画を見る 

一橋大学 確率 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2016一橋大学過去問題
硬貨が2枚ある。最初は2枚とも表の状態で置かれている。次の操作をn回行った後、硬貨が2枚とも裏になっている確率を求めよ。
(操作)2枚とも表、又は2枚とも裏のとき、2枚とも投げる。表裏各1枚のときには表の硬貨だけ投げる。
この動画を見る 

徳島大 連立漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#徳島大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{1}=1,b_{1}=0$
$a_{n+1}=5a_{n}+4b_{n}$
$b_{n+1}=a_{n}+5b_{n}$

(1)
$a_{n+1}+ \alpha b_{n+1}=\beta (a_{n}+\alpha b_{n})$となる$\alpha,\beta$を2組求めよ

(2)
$a_{n},b_{n}$の一般項

(3)
$\displaystyle \sum_{k=1}^n ak$

出典:2012年徳島大学 過去問
この動画を見る 

【数B】数列:隣接三項間型(重解) 次の条件によって定められる数列{an}の一般項を求めよ。a[1]=1,a[2]=5,a[n+2]+8a[n+1]+16a[n]=0

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の条件によって定められる数列${an}$の一般項を求めよ。
$a_1=1,a_2=5,a_{n+2}+8a_{n+1}-16a_n=0$
この動画を見る 

Σ

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
$\displaystyle \sum_{k=1}^n k^2 = \frac{1}{6}n(n+1)(2n+1)$
この動画を見る 
PAGE TOP