【数Ⅱ】【微分法と積分法】微分の基本3 ※問題文は概要欄 - 質問解決D.B.(データベース)

【数Ⅱ】【微分法と積分法】微分の基本3 ※問題文は概要欄

問題文全文(内容文):
$\{(ax+b)^n\}'=na(ax+b)^{n-1}$ ($n$ は正の整数) であることを用いて、次の関数を微分せよ。
$(1)\ y=(2x+1)^3$
$(2)\ y=(x-1)^4$
$(3)\ y=(-2x+1)^5$
チャプター:

0:00 オープニング
0:04 導入 公式の説明
1:50 (1)の解説
2:04 (2)の解説
2:10 (3)の解説
2:25 エンディング

単元: #数Ⅱ#微分法と積分法#平均変化率・極限・導関数#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#微分法と積分法#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\{(ax+b)^n\}'=na(ax+b)^{n-1}$ ($n$ は正の整数) であることを用いて、次の関数を微分せよ。
$(1)\ y=(2x+1)^3$
$(2)\ y=(x-1)^4$
$(3)\ y=(-2x+1)^5$
投稿日:2025.02.19

<関連動画>

06和歌山県教員採用試験(数学:3番 定積分の応用)

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$f(t)=\displaystyle \int_{0}^{1}|x^2-tx|dx$の最小値を求めよ。

出典:和歌山県教員採用試験
この動画を見る 

なぜ?がわかる組立除法(数II)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
組立除法が成り立つ理由解説動画です
この動画を見る 

福田の1日1題わかった数学〜高校2年生第2回〜高次方程式と整数解

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 高次方程式
3次方程式$x^3-7x+n=0$ が
3つの整数解をもつように、
$n$の値を定めよ。
この動画を見る 

福田の共通テスト直前演習〜2021年共通テスト数学ⅡB問題1[1]。直線と円の表す領域とが共有点をもつ条件の問題。

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#集合と命題(集合・命題と条件・背理法)#図形と方程式#円と方程式#軌跡と領域#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
[1]座標平面上に点A(-8,0)をとる。また、不等式
$x^2+y^2-4x-10y+4 \leqq 0$
の表す領域をDとする。

(1)領域Dは、中心が点$(\boxed{\ \ ア\ \ },\boxed{\ \ イ\ \ })$、半径が$\boxed{\ \ ウ\ \ }$の円の
$\boxed{\ \ エ\ \ }$である。

$\boxed{\ \ エ\ \ }$の解答群
⓪ 周   ① 内部   ② 外部   
③ 周および内部   ④ 周および外部  

以下、点$(\boxed{\ \ ア\ \ },\boxed{\ \ イ\ \ })$をQとし、方程式
$x^2+y^2-4x-10y+4=0$
の表す図形をCとする。

(2)点Aを通る直線と領域Dが共有点をもつのはどのようなときかを考えよう。
$(\textrm{i})(1)$により、直線$y=\boxed{\ \ オ\ \ }$は点Aを通るCの接線の一つとなること
がわかる。
太郎さんと花子さんは点Aを通るCのもう一つの接線について話している。
点Aを通り、傾きがkの直線をlとする。

太郎:直線lの方程式は$y=k(x+8)$と表すことができるから、
これを
$x^2+y^2-4x-10y+4=0$
に代入することで接線を求められそうだね。
花子:x軸と直線AQのなす角のタンジェントに着目することでも
求められそうだよ。

$(\textrm{ii})$ 太郎さんの求め方について考えてみよう。
$y=k(x+8)$を$x^2+y^2-4x-10y+4=0$に代入すると、
xについての2次方程式
$(k^2+1)x^2+(16k^2-10k-4)x+64k^2-80k+4=0$
が得られる。この方程式が$\boxed{\ \ カ\ \ }$ときのkの値が接線の傾きとなる。

$\boxed{\ \ カ\ \ }$の解答群
⓪重解をもつ
①異なる2つの実数解をもち、1つは0である
②異なる2つの正の実数解をもつ
③正の実数解と負の実数解をもつ
④異なる2つの負の実数解をもつ
⑤異なる2つの虚数解をもつ

$(\textrm{iii})$花子さんの求め方について考えてみよう。
x軸と直線AQのなす角を$\theta(0 \lt \theta \leqq \frac{\pi}{2})$とすると
$\tan\theta=\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}$
であり、直線$y=\boxed{\ \ オ\ \ }$と異なる接線の傾きは$\tan\boxed{\ \ ケ\ \ }$
と表すことができる。

$\boxed{\ \ ケ\ \ }$の解答群
⓪$\theta$   ①$2\theta$   ②$(\theta+\frac{\pi}{2})$
③$(\theta-\frac{\pi}{2})$   ④$(\theta+\pi)$   ⑤$(\theta-\pi)$
⑥$(2\theta+\frac{\pi}{2})$   ⑦$(2\theta-\frac{\pi}{2})$

$(\textrm{iv})$点Aを通るCの接線のうち、直線$y=\boxed{\ \ オ\ \ }$と異なる接線の傾き
を$k_0$とする。このとき、$(\textrm{ii})$または$(\textrm{iii})$の考え方を用いることにより
$k_0=\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}$
であることがわかる。
直線lと領域Dが共有点をもつようなkの値の範囲は$\boxed{\ \ シ\ \ }$である。

$\boxed{\ \ シ\ \ }$の解答群
⓪$k \gt k_0$ ①$k \geqq k_0$
②$k \lt k_0$ ③$k \leqq k_0$
④$0 \lt k \lt k_0$ ⑤$0 \leqq k \leqq k_0$

2022共通テスト数学過去問
この動画を見る 

【高校数学】  数Ⅱ-4  二項定理②

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の式の展開式における[ ]に指定された項の係数は?

①$(2a+b-c)^6 [a^2bc^3]$

②$(3x-2y+4z)^4 [xy^2z]$

③$ (x^2+x-2)^4[x^5]$

④$(x^2-3x+\displaystyle \frac{2}{x})^4 [x^2]$
この動画を見る 
PAGE TOP