福田の数学〜慶應義塾大学2022年経済学部第2問〜絶対値を含む漸化式 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2022年経済学部第2問〜絶対値を含む漸化式

問題文全文(内容文):
${\Large\boxed{2}}$数列$\left\{a_n\right\}$は
$a_{n+1}=-|a_n|-\frac{1}{2}a_n+5\hspace{15pt}(n=1,2,3,\ldots)$
を満たしている。
(1)$a_1=\frac{1}{2}$ならば、$a_2=\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウ\ \ }},\ a_3=-\frac{\boxed{\ \ エオ\ \ }}{\boxed{\ \ カ\ \ }}$である。
(2)$-2 \leqq a_n \leqq -1$ならば$a_{n+1}$および$a_{n+2}$の取り得る値の範囲は、
それぞれ$\boxed{\ \ キ\ \ }\leqq a_{n+1} \leqq \frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }},\ -\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\leqq a_{n+1} \leqq -\boxed{\ \ シ\ \ }$である。
以下、$a_1=2+(\frac{2}{3})^{10}$とする。
(3)$a_n \lt 0$となる自然数nの内最小のものをmとすると、$m=\boxed{\ \ スセ\ \ }$である。
(4)(3)の$m$に対して、自然数kが$2k \geqq m$を満たすとき、
$a_{2k+2}=-\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}\ a_{2k}-\frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツ\ \ }}$
より
$a_{2k}=-\frac{\boxed{\ \ テト\ \ }}{\boxed{\ \ ナ\ \ }}+\frac{3}{\boxed{\ \ ニヌ\ \ }}(-\frac{\boxed{\ \ ネ\ \ }}{\boxed{\ \ ノ\ \ }})^{k-\boxed{\ \ ハ\ \ }}$
が成り立つ。

2022慶應義塾大学経済学部過去問
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{2}}$数列$\left\{a_n\right\}$は
$a_{n+1}=-|a_n|-\frac{1}{2}a_n+5\hspace{15pt}(n=1,2,3,\ldots)$
を満たしている。
(1)$a_1=\frac{1}{2}$ならば、$a_2=\frac{\boxed{\ \ アイ\ \ }}{\boxed{\ \ ウ\ \ }},\ a_3=-\frac{\boxed{\ \ エオ\ \ }}{\boxed{\ \ カ\ \ }}$である。
(2)$-2 \leqq a_n \leqq -1$ならば$a_{n+1}$および$a_{n+2}$の取り得る値の範囲は、
それぞれ$\boxed{\ \ キ\ \ }\leqq a_{n+1} \leqq \frac{\boxed{\ \ ク\ \ }}{\boxed{\ \ ケ\ \ }},\ -\frac{\boxed{\ \ コ\ \ }}{\boxed{\ \ サ\ \ }}\leqq a_{n+1} \leqq -\boxed{\ \ シ\ \ }$である。
以下、$a_1=2+(\frac{2}{3})^{10}$とする。
(3)$a_n \lt 0$となる自然数nの内最小のものをmとすると、$m=\boxed{\ \ スセ\ \ }$である。
(4)(3)の$m$に対して、自然数kが$2k \geqq m$を満たすとき、
$a_{2k+2}=-\frac{\boxed{\ \ ソ\ \ }}{\boxed{\ \ タ\ \ }}\ a_{2k}-\frac{\boxed{\ \ チ\ \ }}{\boxed{\ \ ツ\ \ }}$
より
$a_{2k}=-\frac{\boxed{\ \ テト\ \ }}{\boxed{\ \ ナ\ \ }}+\frac{3}{\boxed{\ \ ニヌ\ \ }}(-\frac{\boxed{\ \ ネ\ \ }}{\boxed{\ \ ノ\ \ }})^{k-\boxed{\ \ ハ\ \ }}$
が成り立つ。

2022慶應義塾大学経済学部過去問
投稿日:2022.06.21

<関連動画>

福田の数学〜慶應義塾大学2021年商学部第4問〜数列の文章題

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$座標平面上でx座標とy座標がいずれも整数である点を格子点と呼ぶ。それぞれ
の正の整数nについて、4つの格子点$A_n(n,n),\ B_n(-n,n),\ C_n(-n,-n),\ D_n(n,-n)$
が作る正方形をJ_nとする。また、$(n-1,n)$にある格子点を$P_n$とする。
$\left\{a_k\right\}$を初項$a_1$が$-56$で、交差が$\frac{1}{4}$の等差数列とし、数列$\left\{a_k\right\}$の各項を以下の
ようにして格子点上順番に割り当てていく。
1.初項$a_1$は格子点$P_1$に割り当てる。
2.$a_l$が正方形$J_m$の周上にある格子点で$A_m$以外の点に割り当てられているときには、
$J_m$の周上でその点から半時計回り(右図(※動画参照)での矢印が示す方向)に一つ移動
した格子点に$a_{l+1}$を割り当てる。
3$.a_l$が格子点$A_m$に割り当てられているときには、$a_{l+1}$を格子点$P_{m+1}$に割り当てる。

全体としては、図に示されているようにして、格子点をたどっていくことになる。
(1)格子点$P_n$に割り当てられる数列$\left\{a_k\right\}$の項を$p_n$とし、格子点$C_n$に割り当て
られる数列$\left\{a_k\right\}$の項を$c_n$とする。
このとき、$p_4=-\boxed{\ \ アイ\ \ }, c_4=-\frac{\boxed{\ \ ウエオ\ \ }}{\boxed{\ \ カ\ \ }}$である。
(2)上で定めた$p_n$を用いて、$q_n$を数列$\left\{p_n\right\}$の初項$p_1$から第n項$p_n$までの和とする。
$q_n$をnを使って表すと、$q_n=\frac{\boxed{\ \ キ\ \ }}{\boxed{\ \ ク\ \ }}n^3-\frac{\boxed{\ \ ケコサ\ \ }}{\boxed{\ \ シ\ \ }}n$である。
(3)上で定めた$q_n$が最小値を取るのは、$n=\boxed{\ \ ス\ \ }$または$n=\boxed{\ \ セ\ \ }$のときであり、
その値は#$-\boxed{\ \ ソタチ\ \ }$である。

2021慶應義塾大学商学部過去問
この動画を見る 

【高校数学】和の記号・シグマ~数列の和を丁寧に~ 3-8【数学B】

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
この動画を見る 

旭川医大 漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#旭川医科大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
旭川医科大学過去問題
数列{$a_n$},{$b_n$}
$b_n=3a_{n+1}-2a_n$と定義
{$b_n$}は初項b$(\neq 0)$,公比rの等比数列
(1)$b=r=2 , a_1=\frac{1}{2}$のとき{$a_n$}の一般項
(2){$a_n$}が等比数列となるための必要十分条件を$b,r,a_1$を用いて表せ。
この動画を見る 

【高校数学】 数B-89 漸化式③

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の条件で定められる数列$\{a_n\}$の一般項を求めよう.

①$a_1=2,a_{n+1}=3a_n-2$

②$a_1=-2,4a_{n+1}=5a_n+4$
この動画を見る 

【高校数学】漸化式で特性方程式を使う理由 3-18.5【数学B】

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数列#漸化式#数学(高校生)#数B
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
【高校数学】漸化式で特性方程式を使う理由を解説していきます。
この動画を見る 
PAGE TOP