福田の数学〜北里大学2021年医学部第1問(3)〜三角関数への置き換えによる最大値の求め方 - 質問解決D.B.(データベース)

福田の数学〜北里大学2021年医学部第1問(3)〜三角関数への置き換えによる最大値の求め方

問題文全文(内容文):
(3)$0 \leqq \theta \lt 2\pi$のとき、関数$f(\theta)=2\cos\theta(\sqrt3\sin\theta+\cos\theta)$の最大値は
$\boxed{ ケ}$である。
$g(x,y)=\frac{2\sqrt3xy+2x^2}{x^4+2x^2y^2+y^4+1}$について考える。aを正の定数とし、点(x,y)が
円$x^2+y^2=a^2$上を動くとき、g$(x,y)$の最大値はaを用いて$\boxed{コ}$と表せる。
また、点(x,y)がxy平面全体を動くとき、g(x,y)の最大値は$\boxed{サ}$である。

2021北里大学医学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(3)$0 \leqq \theta \lt 2\pi$のとき、関数$f(\theta)=2\cos\theta(\sqrt3\sin\theta+\cos\theta)$の最大値は
$\boxed{ ケ}$である。
$g(x,y)=\frac{2\sqrt3xy+2x^2}{x^4+2x^2y^2+y^4+1}$について考える。aを正の定数とし、点(x,y)が
円$x^2+y^2=a^2$上を動くとき、g$(x,y)$の最大値はaを用いて$\boxed{コ}$と表せる。
また、点(x,y)がxy平面全体を動くとき、g(x,y)の最大値は$\boxed{サ}$である。

2021北里大学医学部過去問
投稿日:2022.12.11

<関連動画>

【高校数学】 数Ⅱ-95 三角関数のグラフ①

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の関数のグラフと周期を書こう。

①$y=\sin\theta$

②$y=\cos\theta$

③$y=\tan\theta$
この動画を見る 

【わかりやすく解説】数学Ⅱ 二項定理で項の係数を求めよう!

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の式の展開式における、[ ]内の項の係数を求めよ。
(1)
$(x+3)^5$  $[x^3]$

(2)
$(2x-3y)^6$  $[x^2y^4]$
この動画を見る 

【高校数学】数Ⅲ-9 複素数の図表示①

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
空欄に適する数や言葉をいれよう.

点$(\sqrt3+3i)z$は,点$z$を①を中心に②だけ回転し,
原点からの距離$\vert z \vert$を③倍したものである.

点$\sqrt5(-1+i)z$は,点$z$を④を中心に⑤だけ回転し,
原点からの距離$\vert z \vert$を⑥倍したものである.
この動画を見る 

因数定理による因数分解の裏技2選

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
因数定理による因数分解の裏技2選紹介動画です

$x^3+15x^2+32x+12$
を因数分解
この動画を見る 

結局0の0乗っていくつになるの?

アイキャッチ画像
単元: #算数(中学受験)#数学(中学生)#数Ⅱ#指数関数と対数関数#指数関数#対数関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
0の0乗は何になるか
この動画を見る 
PAGE TOP