福田の数学〜北里大学2021年医学部第1問(3)〜三角関数への置き換えによる最大値の求め方 - 質問解決D.B.(データベース)

福田の数学〜北里大学2021年医学部第1問(3)〜三角関数への置き換えによる最大値の求め方

問題文全文(内容文):
(3)$0 \leqq \theta \lt 2\pi$のとき、関数$f(\theta)=2\cos\theta(\sqrt3\sin\theta+\cos\theta)$の最大値は
$\boxed{ ケ}$である。
$g(x,y)=\frac{2\sqrt3xy+2x^2}{x^4+2x^2y^2+y^4+1}$について考える。aを正の定数とし、点(x,y)が
円$x^2+y^2=a^2$上を動くとき、g$(x,y)$の最大値はaを用いて$\boxed{コ}$と表せる。
また、点(x,y)がxy平面全体を動くとき、g(x,y)の最大値は$\boxed{サ}$である。

2021北里大学医学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
(3)$0 \leqq \theta \lt 2\pi$のとき、関数$f(\theta)=2\cos\theta(\sqrt3\sin\theta+\cos\theta)$の最大値は
$\boxed{ ケ}$である。
$g(x,y)=\frac{2\sqrt3xy+2x^2}{x^4+2x^2y^2+y^4+1}$について考える。aを正の定数とし、点(x,y)が
円$x^2+y^2=a^2$上を動くとき、g$(x,y)$の最大値はaを用いて$\boxed{コ}$と表せる。
また、点(x,y)がxy平面全体を動くとき、g(x,y)の最大値は$\boxed{サ}$である。

2021北里大学医学部過去問
投稿日:2022.12.11

<関連動画>

福田の数学〜早稲田大学2022年教育学部第1問(3)〜四面体と四面体の共通部分の切り口の面積

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#図形と計量#三角比(三角比・拡張・相互関係・単位円)#図形と方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (3)座標空間内の4点(2,0,0),\ (-1,\sqrt3,0),\ (-1,-\sqrt3,0),\ (0,0,2)を頂点と\\
する四面体をP、4点(-2,0,1),\ (1,-\sqrt3,1),\ (1,\sqrt3,1),\ (0,0,-1)を頂点\\
とする四面体をQとする。RをPとQの共通部分とする。Rを平面z=\frac{1}{3}で\\
切ったときの切り口の面積を求めよ。\hspace{145pt}
\end{eqnarray}

2022早稲田大学教育学部過去問
この動画を見る 

福田の入試問題解説〜慶應義塾大学2022年理工学部第2問〜連立不等式の表す領域の面積と回転体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ rを正の実数とし、円C_1:(x-2)^2+y^2=r^2、楕円C_2:\frac{x^2}{9}+y^2=1を考える。\\
(1)円C_1と楕円C_2の共有点が存在するようなrの値の範囲は\boxed{\ \ カ\ \ } \leqq r \leqq \boxed{\ \ キ\ \ }である。\\
(2)r=1のとき、C_1とC_2の共有点の座標を全て求めると\boxed{\ \ ク\ \ }である。\\
これらの共有点のうちy座標が正となる点のy座標をy_0とする。連立不等式\\
\\
\left\{\begin{array}{1}
(x-2)^2+y^2 \leqq 1\\
0 \leqq y \leqq y_0\\
\end{array}\right. の表す領域の面積は\boxed{\ \ ケ\ \ }である。\\
\\
\\

(3)連立不等式
\left\{\begin{array}{1}
(x-2)^2+y^2 \leqq 1\\
\displaystyle\frac{x^2}{9}+y^2 \geqq 1\\
y \geqq 0\\
\end{array}\right. の表す領域をDとする。Dをy軸のまわりに\\
1回転させてできる立体の体積は\boxed{\ \ コ\ \ }である。
\end{eqnarray}

2022慶應義塾大学理工学部過去問
この動画を見る 

【数Ⅱ】微分法と積分法:f(x)の式の中に積分が入る関数を求めます!

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の等式を満たす$f(x)$を求めよ。 
$f(x)=x+\displaystyle \int_{0}^{3}f(t)dt$
この動画を見る 

【数学Ⅱ/積分】定積分で表された関数を微分

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の$x$の関数を微分せよ。
(1)
$\displaystyle \int_{1}^{x} (t^2-3t+2)dt$

(2)
$\displaystyle \int_{x}^{2} (3t^2-1)dt$
この動画を見る 

福田の数学〜早稲田大学2021年商学部第1問(1)〜三角形と三角関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)三角形ABCにおいて、\angle B=2\alpha, \angle C=2\betaとする。\\
\\
\tan\alpha\tan\beta=x, \frac{AB+AC}{BC}=y\\
\\
とするとき、yをxで表すと、y=\boxed{\ \ ア\ \ }となる。
\end{eqnarray}

2021早稲田大学商学部過去問
この動画を見る 
PAGE TOP