岩手大 3次方程式の解 共役の複素数 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

岩手大 3次方程式の解 共役の複素数 Mathematics Japanese university entrance exam

問題文全文(内容文):
実数係数の3次方程式
$x^3+ax^2+bx+3=0$の1つの解が$1+\sqrt{ 2 }i$

(1)
$a,b$と他の2解を求めよ。

(2)
3つの解を$\alpha,\beta,\gamma$とする
$\alpha^5+\beta^5+\gamma^5$の値は?

出典:2006年岩手大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
実数係数の3次方程式
$x^3+ax^2+bx+3=0$の1つの解が$1+\sqrt{ 2 }i$

(1)
$a,b$と他の2解を求めよ。

(2)
3つの解を$\alpha,\beta,\gamma$とする
$\alpha^5+\beta^5+\gamma^5$の値は?

出典:2006年岩手大学 過去問
投稿日:2019.03.18

<関連動画>

東大 複素数

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a=\cos\dfrac{\pi}{3}+i\sin\dfrac{\pi}{3}$
$\dfrac{(1-a^n)(1-a^{2n})(1-a^{3n})(1-a^{4n})(1-a^{5n})}{(1-a)(1-a^2)(1-a^3)(1-a^4)(1-a^5)}$の値を求めよ.($n$は自然数である)

1970東大過去問
この動画を見る 

21三重県教員採用試験(数学:1-(3) 解と係数の関係)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(3)$
$x^3+ax^2+bx+21=0$の1つの解が
$x=2+\sqrt3 i$のとき
$a,b$の値と実数解を求めよ.
この動画を見る 

明治大 3倍角の公式と3次方程式

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3$倍角の公式を利用して$x^3-3x-1=0$の$3$つの解を$cos$を用いて答えよ.

2020明治大過去問
この動画を見る 

早稲田大(政)方程式の実数解

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$-90^{ \circ } \lt \theta \lt 90^{ \circ }$
$(\sin \theta)x^2+2(\cos2\theta)x+cos2\theta=0$が少なくとも1つの実数解をもつような$\theta$の範囲を求めよ

出典:2001年早稲田大学 政治経済学部 過去問
この動画を見る 

複素数の計算 群馬大

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z=\dfrac{\sqrt3-1}{2}+\dfrac{\sqrt3+1}{2}i$である.$z^{12}$の値を求めよ

(1)$\dfrac{z}{1+i}$を$a+bi$の形で表せ.
(2)$z$を極形式で表せ.

群馬大過去問
この動画を見る 
PAGE TOP