【数Ⅰ】集合と命題:実数aに対して2つの集合をA={a-1, 4, a²-5a+6},B={1, a²-4, a²-7a+12, 4}とする。A∩B={0, 4}であるとき、aの値を求めよう。 - 質問解決D.B.(データベース)

【数Ⅰ】集合と命題:実数aに対して2つの集合をA={a-1, 4, a²-5a+6},B={1, a²-4, a²-7a+12, 4}とする。A∩B={0, 4}であるとき、aの値を求めよう。

問題文全文(内容文):
実数aに対して2つの集合を$A={a-1, 4, a^2-5a+6},B={1, a^2-4, a^2-7a+12, 4}$とする。$A∩B={0, 4}$であるとき、aの値を求めよう。

チャプター:

0:00 オープニング
0:05 問題文
0:15 問題の考え方
0:52 問題解説
3:07 名言

単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
実数aに対して2つの集合を$A={a-1, 4, a^2-5a+6},B={1, a^2-4, a^2-7a+12, 4}$とする。$A∩B={0, 4}$であるとき、aの値を求めよう。

投稿日:2021.04.18

<関連動画>

福田のおもしろ数学037〜相加相乗平均の罠〜2変数関数の最小値

アイキャッチ画像
単元: #数Ⅰ#2次関数#式と証明#恒等式・等式・不等式の証明#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$x>1,y>1$のとき、
$x+y+\frac{2}{x+y}+\frac{1}{2xy}$の最小値を求めよ
この動画を見る 

大学入試の因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$a^4+b^4$を因数分解せよ。(係数が実数の範囲)
この動画を見る 

【数Ⅰ】絶対値付きの不等式【場合分けしなくても解ける!? 裏技的解法も】

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$(1)\vert x \vert \lt 3を解け.$
$(2)\vert 2x-1 \vert \lt x+4を解け.$
この動画を見る 

九州大学 整数問題 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
2014九州大学過去問題
(1)aは自然数$\quad$ $a^2$を3で割った余りは0か1を証明
(2)$a^2+b^2=3c^2$を満たすと仮定するとa,b,cはすべて3で割りきれなければならないことを証明せよ。
(3)$a^2+b^2=3c^2$を満たす自然数a,b,cは存在しないことを証明
この動画を見る 

福田の数学〜慶應義塾大学2021年薬学部第1問(6)〜整数解

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(6)整数$x,y$が$x \gt 1,y \gt 1,x \neq y$を満たし、等式
$6x^2+13xy+7x+5y^2+7y+2=966$
を満たすとする。
$(\textrm{i})6x^2+13xy+7x+5y^2+7y+2$を因数分解すると$\boxed{\ \ コ\ \ }$である。
$(\textrm{ii})$この等式を満たすxとyの組をすべて挙げると$(x,y)=\boxed{\ \ サ\ \ }$である。

2021慶應義塾大学薬学部過去問
この動画を見る 
PAGE TOP