福田のおもしろ数学507〜三角形の面がm個ありどの頂点にも4本の辺が集まる多面体 - 質問解決D.B.(データベース)

福田のおもしろ数学507〜三角形の面がm個ありどの頂点にも4本の辺が集まる多面体

問題文全文(内容文):

ある凸多面体において、

三角形の面が$m$枚あり、

(他の形の面も含まれている可能性がある)

すべての頂点にはちょうど$4$枚の辺が集まって

いるとする。

このとき、$m$の最小値を求めて下さい。
    
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

ある凸多面体において、

三角形の面が$m$枚あり、

(他の形の面も含まれている可能性がある)

すべての頂点にはちょうど$4$枚の辺が集まって

いるとする。

このとき、$m$の最小値を求めて下さい。
    
投稿日:2025.05.23

<関連動画>

平行線と角の和 芝浦工大附属 2022年入試問題解説46問目

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$\angle x+ \angle y$=?
*図は動画内参照

2022芝浦工業大学附属高等学校
この動画を見る 

【高校数学】 数A-63 直線と平面②

アイキャッチ画像
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
凸多面体の①の数をV,②の数をe,③の数を$f$とすると,
$v-e+f=2$が成り立つ.これを④定理という.

空間内の直線$l,m,n$や,平面$P,Q,R$について,
次の記述が正しいときは○,正しくないときは×で答えよう.

⑤$\ell \perp P,m\perp P$のとき,$\ell \perp m$である.

⑥$\ell /\!/ P,m/\!/ P$のとき,$\ell /\!/m$である.

⑦$P /\!/ \ell,Q /\!/ \ell$のとき,$P/\!/ Q$である.

⑧$P\perp Q,Q /\!/ R$のとき,$P\perp R$である.

⑨$\ell \perp m,m\perp n$のとき,$\ell /\!/ n$である.
この動画を見る 

名古屋大学文学部卒のゆる言語学者にオイラーの公式は理解できるのか?

アイキャッチ画像
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
オイラーの公式に関して解説していきます.
この動画を見る 

福田の数学〜名古屋大学2023年文系第2問〜空間図形と体積の最小

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#式と証明#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 図のような1辺の長さが1の立方体ABCD-EFGHにおいて、辺AD上に点Pをとり、線分APの長さをpとする。このとき、線分AGと線分FPは四角形ADGF上で交わる。その交点をXとする。(※図は動画参照)
(1)線分AXの長さをpを用いて表せ。
(2)三角形APXの面積をpを用いて表せ。
(3)四面体ABPXと四面体EFGXの体積の和をVとする。
Vをpを用いて表せ。
(4)点Pを辺AD上で動かすとき、Vの最小値を求めよ。

2023名古屋大学文系過去問
この動画を見る 

オイラーの多面体定理 説明(英語)

アイキャッチ画像
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
オイラーの多面体定理 説明動画です
この動画を見る 
PAGE TOP