#青山学院大学(2006) #定積分 #Shorts - 質問解決D.B.(データベース)

#青山学院大学(2006) #定積分 #Shorts

問題文全文(内容文):
$\displaystyle \int_{0}^{log3} (e^x+e^{2x}-2e^{-x}) dx$

出典:2006年青山学院大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#青山学院大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{log3} (e^x+e^{2x}-2e^{-x}) dx$

出典:2006年青山学院大学
投稿日:2024.07.10

<関連動画>

【数A】整数の性質:慶應義塾大学 1の位の数は?

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
一の位の数(合同式の利用):十進法の表記法で考えよう。
(1)$2^{100}$の一の位の数 字を求めよう。
(2)$3^{1000}$の一の位の数字を求めよう。
(3)$a=3^{33}$とするとき、$3^a$ の一の位の数字を求めよう。
この動画を見る 

日本医科大 漸化式 自由に解かせてくれ!

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#日本医科大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=-6,
a_{n+1}=2a_n+3n+4^n$
これを求めよ。

日本医科大過去問
この動画を見る 

横浜国大 整数問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
横浜国立大学過去問題
P素数、n自然数
$P^n$を分母とする既約分数で、0より大きく、1より小さいものの総和を$S_n$
$S_1,S_2,S_3$
$S_n$を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2024年薬学部第2問〜放物線と円が接する条件と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 原点をOとする$xy$平面上に円$x^2$+$y^2$-$12y$=0 があり、円の中心をPとする。
円周上に動点Qがあり、半直線POを始線とする動径PQの回転角を$\theta$とする。
ただし、$\theta$は$-\frac{\pi}{2}$<$\theta$<$\frac{\pi}{2}$を満たす実数とする。
(1)直線PQを表す方程式は、$\theta$=0 のとき$\boxed{\ \ ソ\ \ }$であり、$\theta$≠0 のとき$\boxed{\ \ タ\ \ }$である。
(2)点Qを通る放物線$y$=$ax^2$+$b$ をおく。点Qにおける放物線の接線は、点Qにおける円の接線と一致する。ただし、$a$, $b$は実数であり、$a$は$a$>0 を満たす。
(i)$\theta$≠0 のとき$a$と$b$を$\theta$で表すと、$a$=$\boxed{\ \ チ\ \ }$, $b$=$\boxed{\ \ ツ\ \ }$ である。
(ii)$\theta$=$-\frac{\pi}{3}$ のとき、直線PQと放物線で囲まれる部分の面積は$\boxed{\ \ テ\ \ }$である。
この動画を見る 

福田の数学〜京都大学2024年文系第3問〜絶対値の付いた2次関数の最大値

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ $a$は正の定数とする。次の関数の最大値を求めよ。
$f(x)$=$\displaystyle\left|x^2-\left(ax+\frac{3}{4}a^2\right)\right|$+$ax$+$\displaystyle\frac{3}{4}a^2$ (-1≦$x$≦1)
この動画を見る 
PAGE TOP