#電気通信大学(2023) #定積分 #Shorts - 質問解決D.B.(データベース)

#電気通信大学(2023) #定積分 #Shorts

問題文全文(内容文):
以下の定積分を解け。
$\displaystyle \int_{1}^{e} \displaystyle \frac{1}{x(x+e)} dx$

出典:2023年電気通信大学
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#電気通信大学
指導講師: ますただ
問題文全文(内容文):
以下の定積分を解け。
$\displaystyle \int_{1}^{e} \displaystyle \frac{1}{x(x+e)} dx$

出典:2023年電気通信大学
投稿日:2024.05.28

<関連動画>

慶應義塾大 整数問題 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y$自然数
$x^2+5y^2=2016$

出典:慶應義塾 過去問
この動画を見る 

大学入試問題#559「解法色々」 筑波大学(2020) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} \sin^2x\ \cos2x\ dx$

出典:2020年筑波大学 入試問題
この動画を見る 

岐阜薬科大 対数の不等式 良問

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\log_x y-\log_y x^{\frac{1}{2}}\lt -\dfrac{1}{2}$を満たす点$(x,y)$の領域を図示せよ.

岐阜薬科大過去問
この動画を見る 

大学入試問題#288 高知大学(2019) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#高知大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{-\frac{7}{2}}^{\frac{9}{2}}\displaystyle \frac{2^x}{2^x+\sqrt{ 2 }}dx$

出典:2019年高知大学 入試問題
この動画を見る 

解を出さなくても解ける! 難関高校受験するのなら絶対に知って欲しい 解と〇〇の関係 明大明治

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^2-4x+1=0$の2つの解をa,bとするとき
$a^{10}b^8 + a^6b^8 - 3a^5b^5 =?$

明治大学付属明治高等学校
この動画を見る 
PAGE TOP