問題文全文(内容文):
微分方程式
$\displaystyle \frac{dx}{dt}=\sqrt{ 2t+x+4 }$の一般解を求めよ。
微分方程式
$\displaystyle \frac{dx}{dt}=\sqrt{ 2t+x+4 }$の一般解を求めよ。
単元:
#大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#高専(高等専門学校)
指導講師:
ますただ
問題文全文(内容文):
微分方程式
$\displaystyle \frac{dx}{dt}=\sqrt{ 2t+x+4 }$の一般解を求めよ。
微分方程式
$\displaystyle \frac{dx}{dt}=\sqrt{ 2t+x+4 }$の一般解を求めよ。
投稿日:2021.10.15





