微分方程式 高専数学 p 106-1番 - 質問解決D.B.(データベース)

微分方程式 高専数学 p 106-1番

問題文全文(内容文):
微分方程式
$\displaystyle \frac{dx}{dt}=\sqrt{ 2t+x+4 }$の一般解を求めよ。
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#高専(高等専門学校)
指導講師: ますただ
問題文全文(内容文):
微分方程式
$\displaystyle \frac{dx}{dt}=\sqrt{ 2t+x+4 }$の一般解を求めよ。
投稿日:2021.10.15

<関連動画>

福田のわかった数学〜高校3年生理系081〜グラフを描こう(3)対数関数のグラフ

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ グラフを描こう(3)

$y=x(\log x-1)^2$
のグラフを描け。ただし凹凸は調べなくてよい。
この動画を見る 

19奈良県教員採用試験(数学:高校1番 微分)

アイキャッチ画像
単元: #微分とその応用#微分法#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
高1⃣類題
$f(x)=x \quad sinx がx=aで微分可能を示せ$
この動画を見る 

福田のおもしろ数学463〜2定点を見込む角を最大にする方法

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

図のように点$P$を$y$軸の正の部分を

動かすとき、

$\theta$が最大となる点$P$の位置は?

$2$通りの解答を考えて下さい。

図は動画内参照
この動画を見る 

福田の数学〜上智大学2021年理工学部第4問〜空間ベクトルと曲線の追跡

アイキャッチ画像
単元: #大学入試過去問(数学)#空間ベクトル#空間ベクトル#微分とその応用#微分法#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$立方体OADB-CFGEを考える。$0 \leqq x \leqq 1$となる実数xに対し、
$\overrightarrow{ OP }=x\ \overrightarrow{ OG }$と
なる点Pを考え、$\angle APB=\theta$とおく。

(1)$x=0$のとき、$\theta=\boxed{\ \ し\ \ }$である。また、$x=1$のとき、$\theta=\boxed{\ \ す\ \ }$である。

$\boxed{\ \ し\ \ }\ ,\boxed{\ \ す\ \ }$の選択肢
$(\textrm{a})0  (\textrm{b})\frac{\pi}{6}  (\textrm{c})\frac{\pi}{3}  (\textrm{d})\frac{\pi}{2}$
$(\textrm{e})\frac{2}{3}\pi  (\textrm{f})\frac{5}{6}\pi  (\textrm{g})\pi $

(2)$0 \lt x \lt 1$の範囲で$\theta=\frac{\pi}{2}$となるxの値は、$x=\frac{\boxed{\ \ ト\ \ }}{\boxed{\ \ ナ\ \ }}$である。

(3)$y=\cos\theta$とおき、yをxの関数と考える。このとき、yをxで表せ。また、
$0 \leqq x \leqq 1$の範囲で、xy平面上にそのグラフを描け。ただし、増減・凹凸・
座標軸との共有点・極値・変曲点などを明らかにせよ。

2021上智大学理工学部過去問
この動画を見る 

福田のおもしろ数学395〜2変数関数の最大値

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$x\gt 0,y\gt 0$のとき、

$f(x,y=min \left(x,\dfrac{y}{x^2+y^2}\right)$

の最大値を求めて下さい。

*$min(a,b)$は$a,b$の大きくない方の値を
意味します。
この動画を見る 
PAGE TOP