【数学】中高一貫校用問題集:平面上のベクトル:ベクトル方程式:ベクトル方程式の復習① - 質問解決D.B.(データベース)

【数学】中高一貫校用問題集:平面上のベクトル:ベクトル方程式:ベクトル方程式の復習①

問題文全文(内容文):
$△ABC$(それぞれの位置ベクトルを$a、b、c$とする)。
この時、次の問いに答えよ。
(1)点$A$から辺$BC$に下した垂線のベクトル方程式を求めよ。
※(2)は②の動画で説明
チャプター:

0:00 問題紹介
0:30 ベクトル方程式の教科書の復習
10:30 解答解説

単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
$△ABC$(それぞれの位置ベクトルを$a、b、c$とする)。
この時、次の問いに答えよ。
(1)点$A$から辺$BC$に下した垂線のベクトル方程式を求めよ。
※(2)は②の動画で説明
投稿日:2023.06.15

<関連動画>

福田の数学〜慶應義塾大学2021年医学部第1問(1)〜ベクトルの図形への応用

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $(1)点O$を中心とする$半径1$の円に内接する$三角形ABC$において
$-5\overrightarrow{ OA }+7\overrightarrow{ OB }+8\overrightarrow{ OC }=\overrightarrow{ 0 }$
が成り立っているとする。また$直線OA$と$直線BC$の交点を$P$とする。
このとき$線分BC,OP$の長さを求めると$BC=\boxed{\ \ (あ)\ \ },$$OP=\boxed{\ \ (い)\ \ }$である。さらに$三角形ABC$の面積は$\boxed{\ \ (う)\ \ }$である。


2021慶應義塾大学医学部過去問
この動画を見る 

【高校数学】数Ⅲ-46 極座標と極方程式③

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
$O$を極とする極座標において、
2点$A\left(2,\dfrac{\pi}{6}\right),B\left(4,\dfrac{5}{6}\pi\right)$がある。

①線分$AB$の長さを求めよ。

②$\triangle OAB$の面積を求めよ。
この動画を見る 

福田の数学〜九州大学2023年文系第3問〜ベクトルの平行条件と内積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 点Oを原点とする座標平面上の$\overrightarrow{0}$でない2つのベクトル
$\overrightarrow{m}$=($a$, $c$), $\overrightarrow{n}$=($b$, $d$)
に対して、D=ad-bc とおく。以下の問いに答えよ。
(1)$\overrightarrow{m}$と$\overrightarrow{n}$が平行であるための必要十分条件はD=0であることを示せ。
以下、D≠0とする。
(2)座標平面上のベクトル$\overrightarrow{v}$, $\overrightarrow{w}$で
$\overrightarrow{m}$・$\overrightarrow{v}$=$\overrightarrow{n}$・$\overrightarrow{w}$=1, $\overrightarrow{m}$・$\overrightarrow{w}$=$\overrightarrow{n}$・$\overrightarrow{v}$=0
を満たすものを求めよ。
(3)座標平面上のベクトル$\overrightarrow{q}$に対して
$r\overrightarrow{m}$+$s\overrightarrow{n}$=$\overrightarrow{q}$
を満たす実数$r$と$s$を$\overrightarrow{q}$, $\overrightarrow{v}$, $\overrightarrow{w}$を用いて表せ。

2023九州大学文系過去問
この動画を見る 

福田の数学〜北里大学2021年医学部第1問(1)〜空間ベクトルの内積と平面に下ろした垂線の長さ

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#図形と計量#三角比(三角比・拡張・相互関係・単位円)#平面上のベクトルと内積#空間ベクトル#学校別大学入試過去問解説(数学)#北里大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
(1)一辺の長さが4の正四面体ABCDにおいて、辺BCの中点をEとおく。
動点Pは$PE=\frac{1}{2}AE$を満たしながら$\triangle AED$の内部および周上を動くものとし、
$\angle PED=\theta$とおく。このとき、$\overrightarrow{ PB }・\overrightarrow{ PC }=\boxed{ア}$である。また、$\overrightarrow{ PB }・\overrightarrow{ PC }$を
$\theta$を用いて表すと$\overrightarrow{ PC }・\overrightarrow{ PD }=\boxed{イ}$、その最大値は$\boxed{ウ}$である。
$\overrightarrow{ PC }・\overrightarrow{ PD }$が最大となるときの点Pと平面ACDの距離は$\boxed{エ}$である。

2021北里大学医学部過去問
この動画を見る 

福田の数学〜筑波大学2024理系第1問〜交点の位置ベクトルと面積面積

アイキャッチ画像
単元: #平面上のベクトル#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\triangle \mathrm{OAB}$ において、$\mathrm{OA}=\mathrm{OB}=2$ とする。$\angle \mathrm{OAB}$ の二等分線と線分 $\mathrm{OB}$ の交点を $\mathrm{C}$ とし、点 $\mathrm{O}$ から直線 $\mathrm{AC}$ に垂線 $\mathrm{OD}$ を引く。$\vec{\mathrm{OA}}=\vec{a}, \, \vec{\mathrm{OB}}=\vec{b}$ とおく。以下の問いに答えよ。
$(1)$ $\vec{\mathrm{AC}}$ を $\vec{a}$ と $\vec{b}$ を用いて表せ。
$(2)$ $\vec{\mathrm{OD}}$ を $\vec{a}$ と $\vec{b}$ を用いて表せ。
この動画を見る 
PAGE TOP