横浜市立(医) 正二十面体 面のなす角 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

横浜市立(医) 正二十面体 面のなす角 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
'94横浜市立大学過去問題
(1)正五角形ABCDEの一辺を1としたときのAD=ACの長さ
(2)正二十面体のとなり合う面のなす角をθとしたときのcosθの値
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
'94横浜市立大学過去問題
(1)正五角形ABCDEの一辺を1としたときのAD=ACの長さ
(2)正二十面体のとなり合う面のなす角をθとしたときのcosθの値
投稿日:2018.05.02

<関連動画>

【短時間でポイントチェック!!】2倍角の公式〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
0απcosα=45のとき、sin2α,cos2αは?
この動画を見る 

共通テスト2021年数学詳しい解説〜共通テスト2021年2B第1問〜三角関数、指数関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#指数関数と対数関数#三角関数とグラフ#加法定理とその応用#指数関数#対数関数#センター試験・共通テスト関連#共通テスト#センター試験#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
1
[1](1)次の問題Aについて考えよう。
A y=sinθ+3cosθ(0θπ2)$

sinπ    =32, cosπ    =12
であるから、三角関数の合成により

y=    sin(θ+π    )

と変形できる。よって、yθ=π    で最大値      をとる。

(2)pを定数とし、次の問題Bについて考えよう。
B y=sinθ+pcosθ(0θπ2)

(i) p=0のとき、yθ=π    で最大値      をとる。
(ii) p>0のときは、加法定理
cos(θα)=cosθcosα+sinθsinα
を用いると
y=sinθ+pcosθ=    cos(θα)
と表すことができる。ただし、α
sinα=        cosα=        0<α<π2
を満たすものとする。このとき、yθ=    で最大値
    をとる。

(iii) p<0のとき、yθ=    で最大値    をとる。

                の解答群(同じものを繰り返
し選んでもよい。)
1
1
p
p
1p
1+p
p2
p2
1p2
1+p2
(1p)2
(1+p)2


        の解答群(同じものを繰り返し選んでもよい。)
0
α
π2


[2]二つの関数f(x)=2x+2x2g(x)=2x2x2 について考える。

(1)f(0)=    g(0)=    である。また、f(x)は相加平均
と相乗平均の関係から、x=    で最小値      をとる。
g(x)=2 となるxの値はlog2(        )である。

(3)次の①~④は、xにどのような値を代入しても常に成り立つ。
f(x)=     
g(x)=     
{f(x)}2{g(x)}2=     
g(2x)=     f(x)g(x) 

        の解答群(同じものを繰り返し選んでもよい。)
f(x)
f(x)
g(x)
g(x)


(3)花子さんと太郎さんは、f(x)g(x)の性質について話している。

花子:①~④は三角関数の性質に似ているね。
太郎:三角関数の加法定理に類似した式(A)~(D)を考えてみたけど、
常に成り立つ式はあるだろうか。
花子:成り立たない式を見つけるために、式(A)~(D)のβに何か具体
的な値を代入して調べてみたらどうかな。

太郎さんが考えた式
f(αβ)=f(α)g(β)+g(α)f(β) (A)
f(α+β)=f(α)f(β)+g(α)g(β) (B)
g(αβ)=f(α)f(β)+g(α)g(β) (C)
g(α+β)=f(α)g(β)g(α)f(β) (D)


(1),(2)で示されたことのいくつかを利用すると、式(A)~(D)のうち、
    以外の三つは成り立たないことが分かる。    は左辺と右辺
をそれぞれ計算することによって成り立つことが確かめられる。

    の解答群
(A)
(B)
(C)
(D)

2021共通テスト過去問
この動画を見る 

19神奈川県教員採用試験(数学:5番 三角関数)

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
5⃣
tanα=2,tanβ=4,tan(α+β+γ)=1のときtanγを求めよ。
この動画を見る 

【高校数学】 数Ⅱ-99 三角関数を含む方程式・不等式①

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
0θ2πのとき、次の方程式を解こう。また、θの範囲に制限がないときの解を求めよう。

sinθ=+32

2cosθ+1=0

3tanθ=1
この動画を見る 

【数Ⅱ】【三角関数】加法定理の応用7 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#三角関数#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
△ABCにおいて、 tanBtanC=1 であるとき、この三角形は∠Aが直角である直角三角形であることを証明せよ。
この動画を見る 
PAGE TOP preload imagepreload image