問題文全文(内容文):
$a$は正の定数
$log_a(3x)+log_{\sqrt{ a }}(a-x)=1$を満たす実数$x$がちょうど2つである$a$の範囲は?
出典:広島大学 過去問
$a$は正の定数
$log_a(3x)+log_{\sqrt{ a }}(a-x)=1$を満たす実数$x$がちょうど2つである$a$の範囲は?
出典:広島大学 過去問
単元:
#数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#微分法と積分法#剰余の定理・因数定理・組み立て除法と高次方程式#対数関数#学校別大学入試過去問解説(数学)#数学(高校生)#広島大学
指導講師:
鈴木貫太郎
問題文全文(内容文):
$a$は正の定数
$log_a(3x)+log_{\sqrt{ a }}(a-x)=1$を満たす実数$x$がちょうど2つである$a$の範囲は?
出典:広島大学 過去問
$a$は正の定数
$log_a(3x)+log_{\sqrt{ a }}(a-x)=1$を満たす実数$x$がちょうど2つである$a$の範囲は?
出典:広島大学 過去問
投稿日:2019.04.18