【数学Ⅱ/中間テスト対策】繫分数式 - 質問解決D.B.(データベース)

【数学Ⅱ/中間テスト対策】繫分数式

問題文全文(内容文):
次の式を簡単にせよ。
$1-\displaystyle \frac{1}{1-\displaystyle \frac{1}{1-x}}$
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の式を簡単にせよ。
$1-\displaystyle \frac{1}{1-\displaystyle \frac{1}{1-x}}$
投稿日:2021.05.23

<関連動画>

福田の数学〜一橋大学2022年文系第3問〜同値関係の証明と不等式の表す領域

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#一次不等式(不等式・絶対値のある方程式・不等式)#図形と方程式#恒等式・等式・不等式の証明#軌跡と領域#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次の問いに答えよ。
(1)実数x,yについて、$「|x-y| \leqq x+y」$であることの必要十分条件は
「$x \geqq 0$かつ$y \geqq 0$ 」であることを示せ。
(2)次の不等式で定まるxy平面上の領域を図示せよ。
$|1+y-2x^2-y^2| \leqq 1-y-y^2$

2022一橋大学文系過去問
この動画を見る 

【高校数学】 数Ⅱ-13 恒等式②

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の等式がxについての恒等式となるように、定数a、b、cの値を定めよう。

①$\displaystyle \frac{a}{x+1}+\displaystyle \frac{b}{x+3}=\displaystyle \frac{x+9}{(x+1)(x+3)}$

②$\displaystyle \frac{3}{x^3-1}=\displaystyle \frac{a}{x-1}+\displaystyle \frac{bx+c}{x^2+x+1}$
この動画を見る 

数学は学んだことを実際の問題に当てはめるのが大切~全国入試問題解法 #shorts #数学 #高校入試 #sound #動体視力 #素数

アイキャッチ画像
単元: #数学(中学生)#数Ⅱ#式と証明#恒等式・等式・不等式の証明#高校入試過去問(数学)
指導講師: 高校入試から見た数学の世界「全部入試問題」by しろたん
問題文全文(内容文):
$ ab=9991 $となる2以上の自然数$ a,b $の値をそれぞれ求めなさい.

立命館高校過去問
この動画を見る 

【数Ⅱ】【式と証明】展開式の係数 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#式と証明#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式の展開式における、[ ]内に指定された項の係数を求めよ。
(1) (2x²-1)⁶ [x⁶]  (2)(2x³-3x)⁵ [x⁹]

次の式の展開式における、[ ]内に指定された項の係数を求めよ。
(1) (a+b+c)⁶ [ab²c³]  (2)(x+y-3z)⁸ [x⁵yz²]

次の式の展開式における、[ ]内のものを求めよ。
(1) (x²+1/x)⁷ [x²の項の係数]  (2)(2x³-1/3x²)⁵ [定数項]   

次の式の展開式における、[ ]内に指定された項の係数を求めよ。
(1) (x+y+z)⁶ [x²yz³]
(2) (x+2y+3z)⁶ [x³y²z]
(3) (2x-3y+z)⁷ [x²y²z³]
(4) (x+y-3z)⁸ [x⁵z³]
この動画を見る 

北海道大 対数 不等式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$f(t)=log_{2}t+log_{t}4$の最小値は?

(2)
$k$ $log_{2}t \lt (log_{2}t)^2-log_{2}t+2$が成り立つ$k$の範囲は?

出典:北海道大学 過去問
この動画を見る 
PAGE TOP