【数学Ⅱ/中間テスト対策】繫分数式 - 質問解決D.B.(データベース)

【数学Ⅱ/中間テスト対策】繫分数式

問題文全文(内容文):
次の式を簡単にせよ。
$1-\displaystyle \frac{1}{1-\displaystyle \frac{1}{1-x}}$
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の式を簡単にせよ。
$1-\displaystyle \frac{1}{1-\displaystyle \frac{1}{1-x}}$
投稿日:2021.05.23

<関連動画>

11大阪府教員採用試験(数学:1番 接線と恒等式)

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#微分とその応用#接線と法線・平均値の定理#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}$ $a\in IR$とする.

放物線$y=x^2-2(a+1)x+a^2+4a$は
$a$の値によらず一定の直線$\ell$に接する.
この$\ell$の方程式を求めよ.
この動画を見る 

【高校数学】 数Ⅱ-13 恒等式②

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎次の等式がxについての恒等式となるように、定数a、b、cの値を定めよう。

①$\displaystyle \frac{a}{x+1}+\displaystyle \frac{b}{x+3}=\displaystyle \frac{x+9}{(x+1)(x+3)}$

②$\displaystyle \frac{3}{x^3-1}=\displaystyle \frac{a}{x-1}+\displaystyle \frac{bx+c}{x^2+x+1}$
この動画を見る 

福田のおもしろ数学037〜相加相乗平均の罠〜2変数関数の最小値

アイキャッチ画像
単元: #数Ⅰ#2次関数#式と証明#恒等式・等式・不等式の証明#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$x>1,y>1$のとき、
$x+y+\frac{2}{x+y}+\frac{1}{2xy}$の最小値を求めよ
この動画を見る 

【高校数学】  数Ⅱ-7  整式の割り算③

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$x^2-2x-1$で割ると、商が$2x-3$、余りが$-2x$になる整式は?

②$x^4-3x^3+2x^2-1$で割ると、商が$x^2+1$、余りが$3x-2$になる整式は?

③$2x^3+ax+10$で割ったときの余りが$-14$であるとき、定数$a$の値は?
この動画を見る 

【数B】【数列】自然数の式の証明3 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 理数個別チャンネル
問題文全文(内容文):
$n$は自然数とする。
$6^n+4= (5+1)^n+4$と変形することで、$6^n+4$が$5$の倍数であることを、二項定理を利用して証明せよ。
この動画を見る 
PAGE TOP