問題文全文(内容文):
立命館大学過去問題
a,b実数 次の式が成り立つa,bを求めよ。
$a^2+10b^2-6ab-2b= -1$
大阪大学過去問題
(1,0)を通り、$y=x^4-2x^2+1$に接する直線の方程式をすべて求めよ。
立命館大学過去問題
a,b実数 次の式が成り立つa,bを求めよ。
$a^2+10b^2-6ab-2b= -1$
大阪大学過去問題
(1,0)を通り、$y=x^4-2x^2+1$に接する直線の方程式をすべて求めよ。
単元:
#数Ⅱ#大学入試過去問(数学)#微分法と積分法#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#大阪大学#立命館大学#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
立命館大学過去問題
a,b実数 次の式が成り立つa,bを求めよ。
$a^2+10b^2-6ab-2b= -1$
大阪大学過去問題
(1,0)を通り、$y=x^4-2x^2+1$に接する直線の方程式をすべて求めよ。
立命館大学過去問題
a,b実数 次の式が成り立つa,bを求めよ。
$a^2+10b^2-6ab-2b= -1$
大阪大学過去問題
(1,0)を通り、$y=x^4-2x^2+1$に接する直線の方程式をすべて求めよ。
投稿日:2018.06.11