【数C】【平面上の曲線】x²/16+y²/25 =1とy軸の交点をA、Bとする。楕円上の点をPとし、直線PA, PBとx軸の交点をそれぞれQ, R とするとき、 OQ・ORの値は一定であることを示せ。 - 質問解決D.B.(データベース)

【数C】【平面上の曲線】x²/16+y²/25 =1とy軸の交点をA、Bとする。楕円上の点をPとし、直線PA, PBとx軸の交点をそれぞれQ, R とするとき、 OQ・ORの値は一定であることを示せ。

問題文全文(内容文):

原点を $\mathrm{O}$、楕円 $\displaystyle \frac{x^2}{16}+\frac{y^2}{25}=1$ と $y$ 軸の交点を $\mathrm{A,B}$ とする。
$\mathrm{A,B}$ 以外の楕円上の点を$\mathrm{P}$ とし、直線 $\mathrm{PA,\ PB}$ と $x$ 軸の交点をそれぞれ $\mathrm{Q,R}$ とするとき、
$\mathrm{OQ \cdot OR}$ の値は一定であることを示せ。
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師: 理数個別チャンネル
問題文全文(内容文):

原点を $\mathrm{O}$、楕円 $\displaystyle \frac{x^2}{16}+\frac{y^2}{25}=1$ と $y$ 軸の交点を $\mathrm{A,B}$ とする。
$\mathrm{A,B}$ 以外の楕円上の点を$\mathrm{P}$ とし、直線 $\mathrm{PA,\ PB}$ と $x$ 軸の交点をそれぞれ $\mathrm{Q,R}$ とするとき、
$\mathrm{OQ \cdot OR}$ の値は一定であることを示せ。
投稿日:2025.05.27

<関連動画>

福田の数学〜早稲田大学2022年人間科学部第6問〜楕円を軸以外の直線で回転させた立体の体積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#微分法と積分法#接線と増減表・最大値・最小値#微分とその応用#積分とその応用#2次曲線#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{6}}$直線$x+y=1$に接する楕円$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a \gt 0,\ b \gt 0)$がある。
このとき、$b^2=\boxed{\ \ ア\ \ }\ a^2+\boxed{\ \ イ\ \ }$である。
この楕円を直線$y=b$のまわりに1回転してできる立体の体積は、
$a=\frac{\sqrt{\boxed{\ \ ウ\ \ }}}{\boxed{\ \ エ\ \ }}$のとき、
最大値$\frac{\boxed{\ \ オ\ \ }\sqrt{\boxed{\ \ カ\ \ }}}{\boxed{\ \ キ\ \ }}\pi^2$をとる。

2022早稲田大学人間科学部過去問
この動画を見る 

福田の数学〜上智大学2021年理工学部第1問〜双曲線の方程式と回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#2次曲線#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#上智大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 媒介変数表示
$x=\frac{2}{\cos\theta}, y=3\tan\theta+1$
で表される図形Cを考える。

(1)Cは頂点$(±\boxed{\ \ ア\ \ },\ \boxed{\ \ イ\ \ })$、焦点$(±\sqrt{\boxed{\ \ ウ\ \ }},\ \boxed{\ \ エ\ \ })$、
漸近線$y=±\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カ\ \ }}x+\boxed{\ \ キ\ \ }$をもつ双曲線である。
(2)双曲線Cと直線$x=4$は、2点$(4,\ \boxed{\ \ ク\ \ }±\boxed{\ \ ケ\ \ }\sqrt{\boxed{\ \ コ\ \ }})$
で交わる。\\
(3)双曲線Cと直線x=4で囲まれる部分をy軸の周りに1回転\\
させてできる立体の体積は\ \boxed{\ \ サ\ \ }\sqrt{\boxed{\ \ シ\ \ }}\ \pi である。
\end{eqnarray}

2021上智大学理工学部過去問
この動画を見る 

福田のおもしろ数学406〜2次曲線のグラフを判定する

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\dfrac{x^2}{\sin\sqrt 2-\sin\sqrt 3}+\dfrac{y^2}{\cos\sqrt2-\cos\sqrt3}=1$

この方程式の表す図形の概形を描け。

この動画を見る 

【高校数学】数Ⅲ-38 2次曲線と直線④

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①点$(4,1)$から楕円$x^2+2y^2=6$に引いた接線の方程式を求めよ.

②楕円$x^2+4y^2=4$と直線$y=x+k$が,
異なる2点$P,Q$で交わるとき,線分$PQ$の中点$R$の軌跡を求めよ.
この動画を見る 

【数Ⅲ】2次曲線:極座標をゼロから始めましょう

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
極座標を基礎から解説します
この動画を見る 
PAGE TOP