福田のわかった数学〜高校3年生理系052〜極限(52)連続と微分可能(3) - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系052〜極限(52)連続と微分可能(3)

問題文全文(内容文):
数学$\textrm{III}$ 連続と微分可能(3)
$f(x)=\left\{\begin{array}{1}
x\sin\displaystyle\frac{1}{x} (x≠0)\\
0    (x=0)\\
\end{array}\right.$  の$x=0$に
おける連続性、微分可能性を調べよ。
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 連続と微分可能(3)
$f(x)=\left\{\begin{array}{1}
x\sin\displaystyle\frac{1}{x} (x≠0)\\
0    (x=0)\\
\end{array}\right.$  の$x=0$に
おける連続性、微分可能性を調べよ。
投稿日:2021.07.22

<関連動画>

What is e?? The essence of e. Why (e^x)’=e^x

アイキャッチ画像
単元: #関数と極限#微分とその応用#数列の極限#微分法#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)
$\displaystyle \lim_{ n \to \infty }(1+\displaystyle \frac{1}{n})^n$
$\displaystyle \lim_{ h \to \infty }(1+h)^{\displaystyle \frac{1}{h}}$

(2)
$y=e^x$

(3)
動画内の図を見て求めよ

(4)
$y=log_{e}x$
$y^1=\displaystyle \frac{1}{x}$
この動画を見る 

福田の数学〜九州大学2022年理系第5問〜媒介変数表示のグラフの対称性とグラフの追跡

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学(高校生)#九州大学#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$xy$平面上の曲線Cを、媒介変数tを用いて次のように定める。$x=5\cos t+\cos5t, y=5\sin t-\sin5t (-\pi \leqq t \lt \pi)$
以下の問いに答えよ。
(1)区間$0 \lt t \lt \frac{\pi}{6}$において、$\frac{dx}{dt} \lt 0, \frac{dy}{dx} \lt 0$であることを示せ。
(2)曲線Cの$0 \leqq t \leqq \frac{\pi}{6}$の部分、x軸、直線$y=\frac{1}{\sqrt3}x$で囲まれた
図形の面積を求めよ。
(3)曲線Cはx軸に関して対称であることを示せ。また、C上の点を
原点を中心として反時計回りに$\frac{\pi}{3}$だけ回転させた点はC上
にあることを示せ。
(4)曲線Cの概形を図示せよ。

2022九州大学理系過去問
この動画を見る 

【理数個別の過去問解説】2021年度東京大学 数学 理科・文科第3問(1)解説

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
東京大学 2021年理科第3問(1)曲線と接線の接点以外の共有点を求めよ
関数
f(x)=x/(x²+3)
に対して、y=f(x)のグラフをCとする。点A(1,f(1))におけるCの接線を
l:y=g(x)
とする。
(1)Cとlの共有点でAと異なるものがただ1つ存在することを示し、その点のx座標を求めよ。
(2)(1)で求めた共有点のx座標をαとする。定積分
∫{f(x)-g(x)}²dx
を計算せよ。
この動画を見る 

福田の数学〜慶應義塾大学2022年商学部第1問(2)〜三角不等式の一般解

アイキャッチ画像
単元: #大学入試過去問(数学)#三角関数#三角関数とグラフ#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)xを変数とする2次方程式$x^2+(2\sqrt2\cos\theta)x+\sqrt2\sin\theta=0$が
異なる2つの実数解をもつような実数$\theta$の範囲は$\boxed{\ \ ア\ \ }$である。

2022慶應義塾大学商学部過去問
この動画を見る 

福田の数学〜千葉大学2023年第4問〜関数の増減と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#関数の極限#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 2つの実数$a$,$b$は0<$b$<$a$を満たすとする。関数
$f(x)$=$\displaystyle\frac{1}{b}\left(e^{-(a-b)x}-e^{-ax}\right)$
の最大値を$M(a,b)$、最大値をとるときの$x$の値を$X(a,b)$と表す。ここで、$e$は自然対数の底である。
(1)$X(a,b)$を求めよ。
(2)極限$\displaystyle\lim_{b \to +0}X(a,b)$ を求めよ。
(3)極限$\displaystyle\lim_{b \to +0}M(a,b)$ を求めよ。
この動画を見る 
PAGE TOP