福田のわかった数学〜高校3年生理系052〜極限(52)連続と微分可能(3) - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系052〜極限(52)連続と微分可能(3)

問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 連続と微分可能(3)\\
f(x)=\left\{\begin{array}{1}
x\sin\displaystyle\frac{1}{x} (x≠0)\\
0    (x=0)\\
\end{array}\right.  のx=0に\\
おける連続性、微分可能性を調べよ。
\end{eqnarray}
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 連続と微分可能(3)\\
f(x)=\left\{\begin{array}{1}
x\sin\displaystyle\frac{1}{x} (x≠0)\\
0    (x=0)\\
\end{array}\right.  のx=0に\\
おける連続性、微分可能性を調べよ。
\end{eqnarray}
投稿日:2021.07.22

<関連動画>

福田のわかった数学〜高校3年生理系053〜極限(53)連続と微分可能(4)

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 連続と微分可能(4)\\
f(x)=\left\{\begin{array}{1}
x^2\sin\displaystyle\frac{1}{x} (x≠0)\\
0    (x=0)\\
\end{array}\right.  のx=0に\\
おける連続性、微分可能性を調べよ。
\end{eqnarray}
この動画を見る 

福田の入試問題解説〜北海道大学2022年理系第3問〜指数不等式の領域が表す面積の最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ 以下の問いに答えよ。\\
(1)連立不等式x \geqq 2, 2^x \leqq x^y \leqq x^2の表す領域をxy平面上に図示せよ。\\
ただし、自然対数の底eが2 \lt e \lt 3を満たすことを用いてよい。\\
(2)a \gt 0に対して、連立不等式2 \leqq x \leqq 6, (x^y-2^x)(x^a-x^y) \geqq 0\\
の表すxy平面上の領域の面積をS(a)とする。\\
S(a)を最小にするaの値を求めよ。
\end{eqnarray}

2022北海道大学理系過去問
この動画を見る 

数Ⅲ微分!絶対に落としたくない問題です【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数Ⅲ
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$x>0$に対して,$(1+x)^{\frac{1}{x}}<e<(1+x)^{\frac{1}{x}+1}$が成り立つことを示せ。

一橋大過去問
この動画を見る 

【数Ⅲ】微分の公式 積・商・合成関数の微分【中身と外側を区別しよう】

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: めいちゃんねる
問題文全文(内容文):
微分の公式 積・商・合成関数の微分に関して解説していきます.
この動画を見る 

福田の数学〜神戸大学2022年理系第3問〜関数の増減と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}}\ aを実数、0 \lt a \lt 1とし、f(x)=\log(1+x^2)-ax^2とする。以下の問いに答えよ。\\
(1)関数f(x)の極値を求めよ。\\
(2)f(1)=0とする。曲線y=f(x)とx軸で囲まれた図形の面積を求めよ。
\end{eqnarray}

2022神戸大学理系過去問
この動画を見る 
PAGE TOP