問題文全文(内容文):
n,a,b,c,dは0または正の整数
$
\begin{eqnarray}
\left\{
\begin{array}{l}
a^2+b^2+c^2+d^2 = n^2 -6 \\
a+b+c+d = n \\
a \geqq b \geqq c \geqq d
\end{array}
\right.
\end{eqnarray}
$
を満たす(n,a,b,c,d)数の組を全て求めよ
1980年代東京大学
n,a,b,c,dは0または正の整数
$
\begin{eqnarray}
\left\{
\begin{array}{l}
a^2+b^2+c^2+d^2 = n^2 -6 \\
a+b+c+d = n \\
a \geqq b \geqq c \geqq d
\end{array}
\right.
\end{eqnarray}
$
を満たす(n,a,b,c,d)数の組を全て求めよ
1980年代東京大学
単元:
#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師:
数学を数楽に
問題文全文(内容文):
n,a,b,c,dは0または正の整数
$
\begin{eqnarray}
\left\{
\begin{array}{l}
a^2+b^2+c^2+d^2 = n^2 -6 \\
a+b+c+d = n \\
a \geqq b \geqq c \geqq d
\end{array}
\right.
\end{eqnarray}
$
を満たす(n,a,b,c,d)数の組を全て求めよ
1980年代東京大学
n,a,b,c,dは0または正の整数
$
\begin{eqnarray}
\left\{
\begin{array}{l}
a^2+b^2+c^2+d^2 = n^2 -6 \\
a+b+c+d = n \\
a \geqq b \geqq c \geqq d
\end{array}
\right.
\end{eqnarray}
$
を満たす(n,a,b,c,d)数の組を全て求めよ
1980年代東京大学
投稿日:2022.02.08