【短時間でポイントチェック!!】対数の計算・底の変換公式〔現役講師解説、数学〕 - 質問解決D.B.(データベース)

【短時間でポイントチェック!!】対数の計算・底の変換公式〔現役講師解説、数学〕

問題文全文(内容文):
①$\log_{8}2+\log_{8}4$
②$\log_{3}72-\log_{3}8$
③$\log_{5}\sqrt{125}$
④$\log_{8}16$
⑤$\log_{2}3×\log_{3}2$
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
①$\log_{8}2+\log_{8}4$
②$\log_{3}72-\log_{3}8$
③$\log_{5}\sqrt{125}$
④$\log_{8}16$
⑤$\log_{2}3×\log_{3}2$
投稿日:2023.11.28

<関連動画>

福田のおもしろ数学390〜対数の性質

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a,b,c,d$は正の整数である。

$\log_a b=\dfrac{3}{2},\log_c d=\dfrac{5}{4},a-c=9$のとき、

$b-d$はいくつであるか?
この動画を見る 

10大阪府教員採用試験(数学:2番 微積)意外と沼にハマりがち

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#積分とその応用#定積分#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
2⃣ $f(x) = \frac{x}{1+x^2}$
f(α)=f(β) , 0 < α < β のとき$\int_α^β \frac{x}{1+x^2}dx= log_β$を示せ
この動画を見る 

【高校数学】対数関数1.5~例題・基礎~【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
(1)$\log_2 3,\log_4 5,\log_{16} 36$の大小関係を不等号を用いて表せ。


次の方程式、不等式を解け。
(2)$\log_2 x=3$

(3)$\log_{0.5} x≧2$
この動画を見る 

名古屋大学2002どっちがでかいか?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#対数関数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?
①$\ell_n\left(1+\dfrac{1}{x}\right)$ vs $\dfrac{1}{x+1}$
②$\left(1+\dfrac{2002}{2001}\right)^{\frac{2001}{2002}}$ vs $\left(1+\dfrac{2001}{2002}\right)^{\frac{2002}{2001}}$
この動画を見る 

【誘導あり:概要欄】大学入試問題#256 神戸大学2012 #極限 #はさみうちの定理

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$2 \leqq n$自然数
$S_n=\displaystyle \sum_{k=1}^{n^3-1}\displaystyle \frac{1}{k\ log\ k}$

(1)
$2 \leqq k$:自然数
$\displaystyle \frac{1}{(k+1)log(k+1)} \lt \displaystyle \int_{k}^{k+1}\displaystyle \frac{dx}{x\ log\ x} \lt \displaystyle \frac{1}{k\ log\ k}$

(2)
$\displaystyle \lim_{ n \to \infty }S_n$を求めよ。

出典:2012年神戸大学 入試問題
この動画を見る 
PAGE TOP