【数C】【ベクトルの内積】ベクトルa=(-1,7)と45°の角をなし, 大きさが5であるベクトルxを求めよ - 質問解決D.B.(データベース)

【数C】【ベクトルの内積】ベクトルa=(-1,7)と45°の角をなし, 大きさが5であるベクトルxを求めよ

問題文全文(内容文):

ベクトル$\vec{a}=(-1,7)$と
45°の角をなし,
大きさが5である
ベクトル$\vec{x}$を求めよ。
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#平面上のベクトル
指導講師: 理数個別チャンネル
問題文全文(内容文):

ベクトル$\vec{a}=(-1,7)$と
45°の角をなし,
大きさが5である
ベクトル$\vec{x}$を求めよ。
投稿日:2025.05.30

<関連動画>

【数B】平面ベクトル:平面ベクトル存在範囲 △OABに対し,OP=sOA+tOBとする。 点Pが次の条件を満たしながら動くとき、点Pの存在範囲を求めよ。(2)s+t≦4,s≧0,t≧0

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
教材: #中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\triangle OAB$に対して,点$P$が次の条件を満たしながら動くとき,点$P$の存在範囲を求めよ.

(1)$\overrightarrow{OP }=s \overrightarrow{OA}+t\overrightarrow{OB},s+t=4,s \geqq 0,t \geqq 0$
(2)$\overrightarrow{OP }=s \overrightarrow{OA}+t\overrightarrow{OB},s+t=4,s \geqq 0,t \geqq 0$
この動画を見る 

【数C】平面ベクトル:2020年高2第2回駿台全国模試第7問解説してみた!

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#数学(高校生)#駿台模試#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
点Oを中心とする半径1の円に内接する四角形ABCDについて、次の条件(I)(II)を考える。
(I)AO=-17/2*AB+5AC (II)OA・OC=OA・OD また、θ=∠AOCとする。次の問いに答えよう。
(1)内積OA・OCをθを用いて表そう。
(2)(I)が成り立つとき、(i)OBをOAとOCを用いて表そう。(ii)cosθの値を求めよう。
この動画を見る 

【高校数学】 数B-52 座標空間における図形③

アイキャッチ画像
単元: #平面上のベクトル#複素数平面#ベクトルと平面図形、ベクトル方程式#図形への応用#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$(x+5)^2+(y-1)^2+(z-2)^2=13$が$xy$平面と交わってできる
図形の方程式を求めよう.

②中心が$(1,a,2)$,半径が6の球面が$zx$平面と交わってできる
円の半径が$3\sqrt3$であるとき,$a$の値を求めよ.

③方程式$x^2+y^2+z^2-2x+4y+6z=2$はどのような図形を
表しているか答えよう.
この動画を見る 

高校数学:数学検定準1級1次:問題3,4 :ベクトルの内積、複素数平面絶対値と角度

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#平面上のベクトル#複素数平面#平面上のベクトルと内積#複素数平面#数学検定#数学検定準1級#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
問題3 3つの単位ベクトル$\vec{ a },\vec{ b },\vec{ c }$が2$\vec{ a }+3\vec{ b }+4\vec{ c }=\vec{ 0 }$を満たすとき、$\vec{ a }$と$\vec{ c }$の内積$\vec{ a }・\vec{ c }$を求めなさい。
ただし、$\vec{ 0 }$は零ベクトルを表します。

問題4 複素数 $z=-2-i$について、次の問いに答えなさい。ただし、iは虚数単位を表します。
   ① zの絶対値を求めなさい。
   ② zの偏角を$\theta$とします。このとき、$sin4\theta$の値を求めなさい。
この動画を見る 

福田の数学〜中央大学2022年経済学部第2問〜ベクトルの内積と三角形の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\triangle ABC$において、ベクトルの内積が
$\overrightarrow{ CA }・\overrightarrow{ AB }=-2,\ \ \overrightarrow{ AB }・\overrightarrow{ BC }=-4,\ \ \ \overrightarrow{ BC }・\overrightarrow{ CA }=-5$
であるとき、以下の設問に答えよ。
(1)3辺AB,BC,CAの長さを求めよ。
(2)\triangle ABCの面積を求めよ。

2022中央大学経済学部過去問
この動画を見る 
PAGE TOP