素数であることの証明【京都大学】【数学 入試問題】 - 質問解決D.B.(データベース)

素数であることの証明【京都大学】【数学 入試問題】

問題文全文(内容文):
$n$を2以上の整数とする。$3^n-2^n$が素数ならば$n$も素数であることを示せ。

京都大過去問
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$n$を2以上の整数とする。$3^n-2^n$が素数ならば$n$も素数であることを示せ。

京都大過去問
投稿日:2022.09.04

<関連動画>

マイクロソフトの数学部で講師をしてきた。合同式で暗号

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
合同式で暗号を作成する 説明動画です
この動画を見る 

関西医科大

アイキャッチ画像
単元: #数Ⅰ#数A#大学入試過去問(数学)#数と式#式の計算(整式・展開・因数分解)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#関西医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$3x^2+xy-2y^2-x+4y=4$をみたす整数(x,y)を求めよ.

関西医科大過去問
この動画を見る 

滋賀医科大 複雑な問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#滋賀医科大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n!=2^{an}m(n \geqq 2,m$奇数$)$

(1)
$\displaystyle \frac{(2n)!}{2^nn!}$は奇数 示せ


(2)
$a_{2n}-a_n$を$n$で表せ


(3)
$n=2^k$のときの$a_n$
$n$を用いて表せ


(4)
$a_n \lt n$を表せ


(5)
$\sqrt[ n ]{ n! }$は無理数 示せ

出典:滋賀医科大学 過去問
この動画を見る 

大阪公立大 フェルマーの小定理を利用した証明

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#大阪公立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2023大阪公立大学過去問題
p素数 a,n自然数
$4n^2+4n-1=ap$なら
①2n+1とapは互いに素であることを示せ
②$2^{\frac{p-1}{2}}-1$はpで割り切れることを示せ
この動画を見る 

平方数にならない式

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
nを自然数とする.
$n(n+1)(n+2)(n+3)$は平方数でないことを示せ.
この動画を見る 
PAGE TOP