福田の入試問題解説〜北海道大学2022年理系第5問〜複素数平面上の点の軌跡とドモアブルの定理 - 質問解決D.B.(データベース)

福田の入試問題解説〜北海道大学2022年理系第5問〜複素数平面上の点の軌跡とドモアブルの定理

問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{5}}}\ 複素数zに関する次の2つの方程式を考える。ただし、\bar{ z }はzと共役な複素数とし、\\
iを虚数単位とする。\\
\\
z\bar{ z }=4 \ldots\ldots①     |z|=|z-\sqrt3+i| \ldots\ldots②\\
\\
(1)①、②それぞれの方程式について、その解z全体が表す図形を複素数平面上に\\
図示せよ。\\
\\
(2)①、②の共通解となる複素数を全て求めよ。\\
\\
(3)(2)で求めた全ての複素数の積をwとおく。このときw^nが負の実数となる\\
ための整数nの必要十分条件を求めよ。
\end{eqnarray}

2022北海道大学理系過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large{\boxed{5}}}\ 複素数zに関する次の2つの方程式を考える。ただし、\bar{ z }はzと共役な複素数とし、\\
iを虚数単位とする。\\
\\
z\bar{ z }=4 \ldots\ldots①     |z|=|z-\sqrt3+i| \ldots\ldots②\\
\\
(1)①、②それぞれの方程式について、その解z全体が表す図形を複素数平面上に\\
図示せよ。\\
\\
(2)①、②の共通解となる複素数を全て求めよ。\\
\\
(3)(2)で求めた全ての複素数の積をwとおく。このときw^nが負の実数となる\\
ための整数nの必要十分条件を求めよ。
\end{eqnarray}

2022北海道大学理系過去問
投稿日:2022.03.13

<関連動画>

和歌山大 ド・モアブルの定理 Japanese university entrance exam questions

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#数列#数学的帰納法#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#和歌山大学#数B#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
和歌山大学過去問題
$a_1=b_1=1$
$a_{n+1}=a_n-b_n$
$b_{n+1}=a_n+b_n$
(1)$a_n+b_ni= (1+i)^n$を数学的帰納法で証明せよ。
(2)$a_N=2^{100}$となる自然数Nをすべて求めよ。
この動画を見る 

これから数Ⅲを学ぶ人に贈る。複素数って何だよ?iって何?

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数平面#複素数#複素数平面#数学(高校生)#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
複素数についての解説動画です
この動画を見る 

横浜市大 複素数 cos36°,cos108° 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C#横浜市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
横浜市立大学過去問題
(1)$x^2-x-1=0$解け
(2)複素数Z$(\neq 0)$,$\quad x=Z+\frac{1}{Z}$として、このxを(1)の方程式に代入して、すべての解を求めよ。
(3)$cos\frac{\pi}{5}$と$cos\frac{3\pi}{5}$の値
この動画を見る 

福田の数学〜早稲田大学2021年理工学部第3問〜複素数平面上の点の軌跡

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#積分とその応用#複素数平面#定積分#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{3}}$ 複素数$\alpha=2+i,$ $\beta=-\displaystyle \frac{1}{2}+i$に対応する複素数平面上の点を$A(\alpha),\ B(\beta)$とする。
このとき、以下の問いに答えよ。
(1)複素数平面上の点$C(\alpha^2),\ D(\beta^2)$と原点$O$の3点は一直線上にあることを示せ。

(2)点$P(z)$が直線$AB$上を動くとき、$z^2$の実部を$x$、虚部を$y$として、点$Q(z^2)$の軌跡
を$x,y$の方程式で表せ。

(3)点$P(z)$が三角形$OAB$の周および内部にあるとき、点$Q(z^2)$全体のなす図形をK
とする。$K$を複素数平面上に図示せよ。

(4)(3)の図形$K$の面積を求めよ。

2021早稲田大学理工学部過去問
この動画を見る 

【数ⅢC】複素数平面の基本③複素数平面の極形式の裏ワザ

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の複素数を極形式で表せ
(1)$\sqrt3+i$ (2)$-2+2i$
この動画を見る 
PAGE TOP