福田の入試問題解説〜北海道大学2022年理系第5問〜複素数平面上の点の軌跡とドモアブルの定理 - 質問解決D.B.(データベース)

福田の入試問題解説〜北海道大学2022年理系第5問〜複素数平面上の点の軌跡とドモアブルの定理

問題文全文(内容文):
複素数zに関する次の2つの方程式を考える。ただし、$\bar{ z }$はzと共役な複素数とし、
iを虚数単位とする。
$z\bar{ z }=4 \ldots\ldots$①     $|z|=|z-\sqrt3+i| \ldots\ldots②$

(1)①、②それぞれの方程式について、その解z全体が表す図形を複素数平面上に
図示せよ。
(2)①、②の共通解となる複素数を全て求めよ。
(3)(2)で求めた全ての複素数の積をwとおく。このとき$w^n$が負の実数となる
ための整数nの必要十分条件を求めよ。

2022北海道大学理系過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師: 福田次郎
問題文全文(内容文):
複素数zに関する次の2つの方程式を考える。ただし、$\bar{ z }$はzと共役な複素数とし、
iを虚数単位とする。
$z\bar{ z }=4 \ldots\ldots$①     $|z|=|z-\sqrt3+i| \ldots\ldots②$

(1)①、②それぞれの方程式について、その解z全体が表す図形を複素数平面上に
図示せよ。
(2)①、②の共通解となる複素数を全て求めよ。
(3)(2)で求めた全ての複素数の積をwとおく。このとき$w^n$が負の実数となる
ための整数nの必要十分条件を求めよ。

2022北海道大学理系過去問
投稿日:2022.03.13

<関連動画>

福田の数学〜東京大学2025理系第6問〜複素数平面上の点の軌跡と実部の最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{6}$

複素数平面上の点$\dfrac{1}{2}$を中心とする

半径$\dfrac{1}{2}$の円の周から原点を除いた曲線を

$C$とする。

(1)曲線$C$上の複素数$z$に対し、$\dfrac{1}{z}$の実部は

$1$であることを示せ。

(2)$\alpha,\beta$を曲線$C$上の相異なる複素数とするとき、

$\dfrac{1}{alpha^2}+\dfrac{1}{\beta^2}$がとりうる範囲を

複素数平面上に図示せよ。

(3)$\nu $を(2)で求めた範囲に属さない複素数とするとき、

$\dfrac{1}{\gamma}$の実部がとりうる値の

最大値と最小値を求めよ。

$2025$年東京大学理系過去問題
この動画を見る 

慈恵医大 複素数の基本問題

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東京慈恵会医科大学#東京慈恵会医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\alpha=\cos\dfrac{2}{7}\pi+i\sin\dfrac{2}{7}\pi$
(1)$\alpha^7,\displaystyle \sum_{k=0}^6 {\alpha}_{k}$の値を求めよ.

(2)$\beta=\alpha^3+\alpha^5+\alpha^6$とするとき,$\beta+\bar{\beta},\beta\bar{\beta}$の値を求めよ.

(3)$\beta=a+bi,b$の正負を判定し$a,b$の値を求めよ.

慈恵医大過去問
この動画を見る 

【数ⅢC】 複素数平面の基本⑫半直線のなす角を考える

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
複素数平面の基本⑫半直線のなす角を考えていきます.
この動画を見る 

#16 数検1級1次過去問 複素関数

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#複素数と方程式#複素数平面#複素数平面#数学検定#数学検定1級#数学(高校生)#数C
指導講師: ますただ
問題文全文(内容文):
$\boxed{2}$

$i^2=-1$とする.
$\cos(6i)-i\sin(6i)$を求めよ.
この動画を見る 

福田の数学〜早稲田大学2021年人間科学部第6問〜回転で定義された点列の極限

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{6}}$ 点$M_1(0,0)$を中心に$点(1,0)$を、時計の針の回転と逆の向きを正として、$\theta$だけ回転させた点を$P_1$とする。次に$線分M_1P_1$の$中点M_2$とし、この$M_2$を中心に$点P_1$を$\theta$だけ回転させた点を$P_2$とする。同様に自然数$n$に対して、$線分M_nP_n$の$中点M_{n+1}$を中心に$点P_n$を$\theta$だけ回転させた点を$P_{n+1}$とする。$P_n$の座標を$(x_n,y_n)$とする。
$(1)\theta=\frac{\pi}{4}$のとき、$x_2=\frac{\sqrt{\boxed{\ \ タ\ \ }}}{\boxed{\ \ チ\ \ }},$$ y_2=\frac{\boxed{\ \ ツ\ \ }+\sqrt{\boxed{\ \ テ\ \ }}}{\boxed{\ \ ト\ \ }}$である。
$(2)\theta=\frac{\pi}{3}$のとき、$\lim_{n \to \infty}x_n=\boxed{\ \ ナ\ \ },$ $\lim_{n \to \infty}y_n=\frac{\sqrt{\boxed{\ \ ニ\ \ }}}{\boxed{\ \ ヌ\ \ }}$である。


2021早稲田大学人間科学部過去問
この動画を見る 
PAGE TOP