数学「大学入試良問集」【6−4 メネラウス、方べきの定理】を宇宙一わかりやすく - 質問解決D.B.(データベース)

数学「大学入試良問集」【6−4 メネラウス、方べきの定理】を宇宙一わかりやすく

問題文全文(内容文):
$\triangle ABC$に対し、点$P$辺$AB$の中点、点$Q$は辺$BC$上の$B,C$と異なる点、点$R$は直線$AQ$と直線$CP$との交点とする。
このとき、各問いに答えよ。
(1)
$a=\displaystyle \frac{CR}{RP},b=\displaystyle \frac{CQ}{QB}$とおくとき、$a$と$b$の関係式を求めよ。

(2)
$\triangle ABC$の外接円$O$と直線$CP$との点$C$以外の交点を$X$とする。
$AP=CR,CQ=QB$であるとき、$CR:RP:PX$を求めよ。
単元: #数A#大学入試過去問(数学)#図形の性質#内心・外心・重心とチェバ・メネラウス#方べきの定理と2つの円の関係#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$\triangle ABC$に対し、点$P$辺$AB$の中点、点$Q$は辺$BC$上の$B,C$と異なる点、点$R$は直線$AQ$と直線$CP$との交点とする。
このとき、各問いに答えよ。
(1)
$a=\displaystyle \frac{CR}{RP},b=\displaystyle \frac{CQ}{QB}$とおくとき、$a$と$b$の関係式を求めよ。

(2)
$\triangle ABC$の外接円$O$と直線$CP$との点$C$以外の交点を$X$とする。
$AP=CR,CQ=QB$であるとき、$CR:RP:PX$を求めよ。
投稿日:2021.04.26

<関連動画>

【数A】図形の性質:高3 5月K塾共通テスト 数学IA第5問

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#内心・外心・重心とチェバ・メネラウス#方べきの定理と2つの円の関係#センター試験・共通テスト関連#全統模試(河合塾)#共通テスト#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
△ABCにおいて、$AB=3,AC=6,\angle BAC=90°$であるとき、$BC=(ア)\sqrt{(イ)}$である。Aを中心とし、Bを通る円をKとし、円Kと直線ACの交点のうち辺AC上にある方をD、もう一方をEとする。また、円Kと直線BCの交点でBと異なるものをFとする。このとき、CE=(ウ)であり、方べきの定理を用いると、$CF=\dfrac{(エ)\sqrt{(オ)}}{(カ)}$とわかるから$\dfrac{BF}{FC}=\dfrac{(キ)}{(ク)}$である。さらに、直線EFと辺ABの交点をP、直線EFと線分BCの交点をQとすると、$\dfrac{BQ}{QD}=(ケ)$であり、△BFQの面積は$\dfrac{(コ)}{(サシ)}$である。また、△CPQの面積は$\dfrac{(ス)}{(セ)}$である。
この動画を見る 

【共通テスト】数学IA 第4問整数がめっちゃ簡単になる本質テクニック、教えます(2023年本試)

アイキャッチ画像
単元: #数A#整数の性質#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【共通テスト】数学IA 第4問整数が簡単になる本質テクニック、解説動画です

$37x+26y=3$の整数解($x,y$)をすべて求めよ
この動画を見る 

【高校数学】「これ」知ってる? フェルマーが愛した無限降下法という証明方法 #Shorts

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\sqrt3 $が無理数であることを証明せよ。
この動画を見る 

福田のおもしろ数学310〜累乗で表された数の大小比較

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$$\left( \left( 3 \right)^3 \right)^4,\left( \left( 3 \right)^4 \right)^3,\left( \left( 3 \right)^4\right)^4,\left( \left( 4\right)^3 \right)^3,\left( \left( 4 \right)^3 \right)^4を昇順に直してください。ただし、a^{ b^c}=a^{ (b^c)}とする。$$
この動画を見る 

奈良県立医大 整数問題 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#数学(高校生)#奈良県立医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
奈良県立医科大学過去問題
$S_n=1^n+2^n+3^n+4^n$ n自然数
$S_n$が6の倍数となる条件
この動画を見る 
PAGE TOP