問題文全文(内容文):
7⃣$\displaystyle \lim_{ n \to \infty } (\sqrt{4n^2+7n} - 2\sqrt{n^2+2n})$
7⃣$\displaystyle \lim_{ n \to \infty } (\sqrt{4n^2+7n} - 2\sqrt{n^2+2n})$
単元:
#数学検定・数学甲子園・数学オリンピック等#関数と極限#数列の極限#数学検定#数学検定準1級#数学(高校生)#数Ⅲ
指導講師:
ますただ
問題文全文(内容文):
7⃣$\displaystyle \lim_{ n \to \infty } (\sqrt{4n^2+7n} - 2\sqrt{n^2+2n})$
7⃣$\displaystyle \lim_{ n \to \infty } (\sqrt{4n^2+7n} - 2\sqrt{n^2+2n})$
投稿日:2020.06.09