大学入試問題#507「油断してると沼にはまりがち:良問」 長崎大学(2015) #定積分 - 質問解決D.B.(データベース)

大学入試問題#507「油断してると沼にはまりがち:良問」 長崎大学(2015) #定積分

問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} \displaystyle \frac{\tan\ x}{2-\cos\ 2x} dx$

出典:2015年長崎大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} \displaystyle \frac{\tan\ x}{2-\cos\ 2x} dx$

出典:2015年長崎大学 入試問題
投稿日:2023.04.16

<関連動画>

大学入試問題#358「チャートの例題に載ってもいいのかな?」 青山学院大学(2010) #定積分 #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ a \to \infty } \displaystyle \int_{1}^{0}(\displaystyle \frac{x+1}{\sqrt{ x^2+2x }}-1)dx$

出典:2010年青山学院大学 入試問題
この動画を見る 

【高校数学】秋田大学の積分の問題をその場で解説しながら解いてみた!毎日積分101日目~47都道府県制覇への道~【㊹秋田】【毎日17時投稿】

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#秋田大学#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【秋田大学 2023】
座標平面上に媒介変数$θ$を用いて
$x=2cosθ, y=1+sinθ$
と表される曲線$C$がある。次の問いに答えなさい。
(i) 媒介変数$θ$を消去して$x$と$y$の関係式を求めなさい。
(ii) $\displaystyle θ=\frac{π}{6}$に対応する点における$C$の接線$l$の方程式を求めなさい。
(iii) 曲線$C$と(ii)の接線$l$および$x$軸で囲まれた図形の面積を求めなさい。
この動画を見る 

【高校数学】宇都宮大学の積分の問題をその場で解説しながら解いてみた!毎日積分97日目~47都道府県制覇への道~【㊵栃木】【毎日17時投稿】

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
【宇都宮大学 2023】
関数$f(x)=|x-1|, g(x)=e^{-2x+1}$により定まる座標平面上の曲線$y=(f\circ g)(x)$を$C$とする。ただし、$e$は自然対数の底で$e=2.71828…$である。次の問いに答えよ。
(1) $(f\circ g)(0)$および$\displaystyle \lim_{x \to \infty}(f\circ g)(x)$を求めよ。
(2) 座標平面上に曲線$C$の概形を図示せよ。
(3) $\displaystyle \frac{1}{2}<t<1$を満たす実数$t$に対し、$\displaystyle F(t)=(f\circ g)(\frac{t}{2})+(f\circ g)(t)$と定める。$F(t)$の増減を調べ、極値およびそのときの$t$の値を求めよ。
(4) 曲線$C$と直線$\displaystyle l:y=\frac{1}{2}$で囲まれる部分の面積$S$を求めよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題055〜大阪大学2017年度理系第5問〜回転体と回転体の交わりの部分の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{5}}$ xy平面上で放物線y=$x^2$と直線y=2で囲まれた図形を、y軸のまわりに1回転してできる回転体をLとおく。回転体Lに含まれる点のうち、xy平面上の直線x=1からの距離が1以下のもの全体がつくる立体をMとおく。
(1)$t$を$0 \leqq t \leqq 2$を満たす実数とする。xy平面上の点(0, $t$)を通り、
y軸に直交する平面によるMの切り口の面積を$S(t)$とする。$t=(2\cos\theta)^2$ $\left(\displaystyle\frac{\pi}{4} \leqq \theta \leqq \displaystyle\frac{\pi}{2}\right)$のとき、$S(t)$を$\theta$を用いて表せ。
(2)Mの体積Vを求めよ。

2017大阪大学理系過去問
この動画を見る 

大学入試問題#782「もう何回目だろうか」 横浜市立大学(2004) #区分求積法

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#積分とその応用#定積分#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#数Ⅲ#横浜市立大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty } \{\displaystyle \frac{(2n+1)(2n+2)・・・(2n+n)}{(n+1)(n+2)・・・(n+n)}\}^\frac{1}{n}$

出典:2004年横浜市立大学 入試問題
この動画を見る 
PAGE TOP