福田の数学〜中央大学2024経済学部第1問(6)〜定積分で表された関数 - 質問解決D.B.(データベース)

福田の数学〜中央大学2024経済学部第1問(6)〜定積分で表された関数

問題文全文(内容文):
関数 $f(x)$ は
$\displaystyle f(x)=x^2 \int^{2}_{0} f'(t) dt +Ax, \quad f(1)=1$
を満たしている。ただし、$A$ は定数である。このとき、$f(x)$ が最大になる $x$ を求めよ。
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
関数 $f(x)$ は
$\displaystyle f(x)=x^2 \int^{2}_{0} f'(t) dt +Ax, \quad f(1)=1$
を満たしている。ただし、$A$ は定数である。このとき、$f(x)$ が最大になる $x$ を求めよ。
投稿日:2024.08.11

<関連動画>

福田の数学〜立教大学2024年経済学部第1問(6)〜定積分で表された関数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$0 \leqq x \leqq1$ の範囲において $f(x) \geqq 0$ である $2$ 次関数 $f(x) = ax^2+b$ は、等式
$\displaystyle f(x)(\int_0^1f(t)dt) = x^2+5$
を満たす。このとき、定数 $a,b$ は $a=\fbox{ケ}, b=\fbox{コ}$ である。
この動画を見る 

#弘前大学2023#定積分_57

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#弘前大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{1}^{2} \dfrac{dx}{3+2x-x^2}$を解け.

2023弘前大学過去問題
この動画を見る 

【数学Ⅱ/積分】定積分の基本

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の定積分を求めよ。
(1)
$\displaystyle \int_{1}^{3} (-4x)dx$

(2)
$\displaystyle \int_{1}^{2} (x^2+3x+2)dx$

(3)
$\displaystyle \int_{-1}^{2} (x^2+3x)dx-\displaystyle \int_{-1}^{2} (x^2-x)dx$
この動画を見る 

富山県立大 積分

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#不定積分・定積分#数学(高校生)#富山県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$y=kx$と$y=|x^2-2x|$とで囲まれる2つの部分の面積が等しい$k$の値を求めよ$(0 \gt k \gt 2)$

出典:2009年富山県立大学 過去問
この動画を見る 

毎日積分~47都道府県制覇への道~ #Shorts #高校数学 #積分

アイキャッチ画像
単元: #数Ⅱ#微分法と積分法#不定積分・定積分#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
毎日積分~47都道府県制覇への道
この動画を見る 
PAGE TOP