【わかりやすく解説】相加相乗平均の関係を使う不等式の証明①(高校数学Ⅱ) - 質問解決D.B.(データベース)

【わかりやすく解説】相加相乗平均の関係を使う不等式の証明①(高校数学Ⅱ)

問題文全文(内容文):
$a \gt 0,b \gt 0$のとき、不等式$ab+\displaystyle \frac{4}{ab} \geqq 4$が成り立つことを証明せよ
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$a \gt 0,b \gt 0$のとき、不等式$ab+\displaystyle \frac{4}{ab} \geqq 4$が成り立つことを証明せよ
投稿日:2022.04.15

<関連動画>

二項定理・多項定理を理解する

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
二項定理・多項定理を理解する方法を解説していきます.
この動画を見る 

【高校数学】  数Ⅱ-7  整式の割り算③

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$x^2-2x-1$で割ると、商が$2x-3$、余りが$-2x$になる整式は?

②$x^4-3x^3+2x^2-1$で割ると、商が$x^2+1$、余りが$3x-2$になる整式は?

③$2x^3+ax+10$で割ったときの余りが$-14$であるとき、定数$a$の値は?
この動画を見る 

【高校数学】  数Ⅱ-10  分数式の計算③

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎計算しよう。


$\displaystyle \frac{x+1}{x-1}-\displaystyle \frac{x-1}{x+1} $
$\displaystyle \frac{x+1}{x-1}+\displaystyle \frac{x-1}{x+1} $


$\begin{eqnarray}
1-\frac{1}{1-\frac{1}{1-\frac{1}{a}}}
\end{eqnarray}$
この動画を見る 

聖マリアンナ医大 Σ4乗以上の公式証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
①$\displaystyle \sum_{k=1}^{n}k^3=\left[\dfrac{n(n+1)}{2}\right]$を示せ.
②$(k+1)^5-k^5=5k^4+10k^3+10k^2+5k+1$を利用して
 $\displaystyle \sum_{k=1}^{n}k^4$は$n$の5次式で表せることを示せ.
③$\displaystyle \sum_{k=1}^n k^d$は$n$の$(d+1)$次式で表せることを示せ.

2019聖マリアンナ医大過去問
この動画を見る 

福田の一夜漬け数学〜相加平均・相乗平均の関係〜その証明の考察3(受験編)

アイキャッチ画像
単元: #中1数学#中2数学#中3数学#方程式#式の計算(単項式・多項式・式の四則計算)#式の計算(展開、因数分解)#平方根#数と式#式と証明#式の計算(整式・展開・因数分解)#一次不等式(不等式・絶対値のある方程式・不等式)#恒等式・等式・不等式の証明#文字と式
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $\displaystyle \frac{a+b+c+d}{4} \geqq \sqrt[4]{abcd}$ を既知として、$\displaystyle \frac{a+b+c}{3} \geqq \sqrt[3]{abc}$ を証明せよ。
ただし、a,b,c,dは全て正の数であるとする。

${\Large\boxed{2}}\ \boxed{1}$を利用して、n個の変数の相加・相乗平均の関係を証明せよ。
つまり、n個の正の数\ a_1,a_2,\cdot,a_nに対して
$\displaystyle \frac{a_1+a_2+\cdots+a_n}{n} \geqq \sqrt[n]{a_1a_2\cdots a_n}$
この動画を見る 
PAGE TOP