【高校数学】数Ⅲ-30 双曲線② - 質問解決D.B.(データベース)

【高校数学】数Ⅲ-30 双曲線②

問題文全文(内容文):
次の双曲線の頂点と焦点および漸近線を求めよ.

①$\dfrac{x^2}{4}-\dfrac{y^2}{9}=1$

②$9x^2-16y^2=144$

③$3x^2-9y^2=-1$
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の双曲線の頂点と焦点および漸近線を求めよ.

①$\dfrac{x^2}{4}-\dfrac{y^2}{9}=1$

②$9x^2-16y^2=144$

③$3x^2-9y^2=-1$
投稿日:2017.05.05

<関連動画>

福田のおもしろ数学406〜2次曲線のグラフを判定する

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\dfrac{x^2}{\sin\sqrt 2-\sin\sqrt 3}+\dfrac{y^2}{\cos\sqrt2-\cos\sqrt3}=1$

この方程式の表す図形の概形を描け。

この動画を見る 

【数C】【平面上の曲線】x²/a²-y²/b²=1の焦点と漸近線の距離を求めよ

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師: 理数個別チャンネル
問題文全文(内容文):
双曲線 $\displaystyle \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$$\ (a \gt 0,\ b \gt 0)$

の焦点と漸近線の距離を求めよ。
この動画を見る 

【数C】【平面上の曲線】2次曲線1 ※問題文は概要欄

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のような放物線の方程式を求めよ。
(1) 軸が x軸、頂点が原点で、点 (8,4)を通る放物線
(2) 頂点が原点で、焦点がx軸上にあり、点(-3,3)を通る放物線
この動画を見る 

福田の数学〜早稲田大学2021年人間科学部第7問〜双曲線と図形問題

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#平面上の曲線#図形と計量#2次曲線#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{7}}$ 原点を$O$とする座標平面上で、2点$(\sqrt5,0),$$(-\sqrt5,0)$を焦点とし、2点$A(1,0),$$A'(-1,0)$を頂点とする双曲線を$H$とする。$H$の方程式を$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$と表すとき、$a^2=\boxed{\ \ ネ\ \ },$ $b^2=\boxed{\ \ ノ\ \ }$である。双曲線Hの漸近線のうち、傾きが正であるものの方程式は$y=\boxed{\ \ ハ\ \ }x$である。$点P(p,q)$は双曲線$H$の$第1象限$の部分を動く点とする。$点P$から$x軸$に下ろした垂線の足を$Q$、$直線PQ$と$双曲線H$の漸近線との交点のうち、$第1象限$にあるものを$R$とする。$点P$における$H$の接線と$直線x=1$との交点を$M$とし、$直線OM$と$直線AP$との交点を$N$とする。$三角形OQR$の面積を$S$、$三角形OAN$の面積を$T$とするとき、$\frac{T}{S}$は、$p=\boxed{\ \ ヒ\ \ }$のとき、最大値$\frac{\boxed{\ \ フ\ \ }}{\boxed{\ \ ヘ\ \ }}$をとる。

2021早稲田大学人間科学部過去問
この動画を見る 

福田の数学〜神戸大学2022年理系第4問〜双曲線が直線から切り取る弦の中点の軌跡

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上の曲線#図形と方程式#点と直線#軌跡と領域#2次曲線#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
aを正の実数とし、双曲線$\frac{x^2}{4}-\frac{y^2}{4}=1$と直線$y=\sqrt ax+\sqrt a$が異なる2点P,Q
で交わっているとする。線分PQの中点をR(s,t)とする。以下の問いに答えよ。
(1)aの取りうる値の範囲を求めよ。
(2)s,tの値をaを用いて表せ。
(3)aが(1)で求めた範囲を動くときにsのとりうる値の範囲を求めよ。
(4)tの値をsを用いて表せ。

2022神戸大学理系過去問
この動画を見る 
PAGE TOP