【数学】平方根:暗算で根号の中身を変形できない生徒がまずするべき考え方 - 質問解決D.B.(データベース)

【数学】平方根:暗算で根号の中身を変形できない生徒がまずするべき考え方

問題文全文(内容文):
平方根:暗算で根号の中身を変形できない生徒がまずするべき考え方に関して解説していきます.
チャプター:

0:00 オープニング
0:24 本編
1:40 エンディング

単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
平方根:暗算で根号の中身を変形できない生徒がまずするべき考え方に関して解説していきます.
投稿日:2021.12.21

<関連動画>

福田の数学〜3乗根のおおよその値を知る方法〜早稲田大学2023年社会科学部第3問〜3乗根と2重根号を簡単にする

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#指数関数と対数関数#恒等式・等式・不等式の証明#指数関数#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}$とする。
(1)$a^3$を$a$の1次式で表せ。
(2)$a$は整数であることを示せ。
(3)$b=a=\sqrt[3]{5\sqrt{2}+7}+\sqrt[3]{5\sqrt{2}-7}$
を超えない最大の整数を求めよ。

2023早稲田大学社会科学部過去問
この動画を見る 

無理数の無理数乗が有理数

アイキャッチ画像
単元: #数Ⅰ#数と式#集合と命題(集合・命題と条件・背理法)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(無理数)^{無理数} = 有理数$
となる例を挙げよ
この動画を見る 

cos15°を余弦定理と正弦定理で求める方法

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
cos15°を余弦定理と正弦定理で求める方法解説動画です
この動画を見る 

ただ二重根号を外すだけ

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sqrt{2065+180\sqrt{10}}$
これを求めよ.
この動画を見る 

答えが変わる!!  慶應湘南藤沢中

アイキャッチ画像
単元: #数Ⅰ#数と式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
▢×▢=1849
(▢は同じ数)

慶應義塾湘南藤沢中等部
この動画を見る 
PAGE TOP