福田の数学〜東北大学2024年理系第5問〜関数の増減と方程式の整数解 - 質問解決D.B.(データベース)

福田の数学〜東北大学2024年理系第5問〜関数の増減と方程式の整数解

問題文全文(内容文):
$\Large{\boxed{5}}$ $x$≧2 を満たす実数$x$に対し、
$f(x)$=$\displaystyle\frac{\log(2x-3)}{x}$
とおく。必要ならば、$\displaystyle\lim_{t \to \infty}\frac{\log t}{t}$=0 であること、および自然対数の底$e$が2<$e$<3 を満たすことを証明なしで用いてもよい。
(1)$f'(x)$=$\displaystyle\frac{g(x)}{x^2(2x-3)}$ とおくとき、関数$g(x)$ ($x$≧2)を求めよ。
(2)(1)で求めた関数$g(x)$に対し、$g(\alpha)$=0 を満たす2以上の実数$\alpha$がただ一つ存在することを示せ。
(3)関数$f(x)$ ($x$≧2)の増減と極限$\displaystyle\lim_{t \to \infty}f(x)$ を調べ、$y$=$f(x)$ ($x$≧2)のグラフの概形を$xy$平面上に描け。ただし(2)の$\alpha$を用いてよい。グラフの凹凸は調べなくてよい。
(4)2≦$m$<$n$ を満たす整数$m$,$n$の組($m$,$n$)に対して、等式
(*)$(2m-3)^n$=$(2n-3)^m$
が成り立つとする。このような組($m$,$n$)をすべて求めよ。
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{5}}$ $x$≧2 を満たす実数$x$に対し、
$f(x)$=$\displaystyle\frac{\log(2x-3)}{x}$
とおく。必要ならば、$\displaystyle\lim_{t \to \infty}\frac{\log t}{t}$=0 であること、および自然対数の底$e$が2<$e$<3 を満たすことを証明なしで用いてもよい。
(1)$f'(x)$=$\displaystyle\frac{g(x)}{x^2(2x-3)}$ とおくとき、関数$g(x)$ ($x$≧2)を求めよ。
(2)(1)で求めた関数$g(x)$に対し、$g(\alpha)$=0 を満たす2以上の実数$\alpha$がただ一つ存在することを示せ。
(3)関数$f(x)$ ($x$≧2)の増減と極限$\displaystyle\lim_{t \to \infty}f(x)$ を調べ、$y$=$f(x)$ ($x$≧2)のグラフの概形を$xy$平面上に描け。ただし(2)の$\alpha$を用いてよい。グラフの凹凸は調べなくてよい。
(4)2≦$m$<$n$ を満たす整数$m$,$n$の組($m$,$n$)に対して、等式
(*)$(2m-3)^n$=$(2n-3)^m$
が成り立つとする。このような組($m$,$n$)をすべて求めよ。
投稿日:2024.04.21

<関連動画>

福田の数学〜早稲田大学2021年教育学部第1問(3)〜2曲線の相接

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#接線と法線・平均値の定理#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (3)座標平面上の2つの曲線$y=ae^x$と$y=-x^2+2x$が共有点をもち、かつ、その
共有点において共通の接線をもつような正の定数$a$の値を求めよ。

2021早稲田大学教育学部過去問
この動画を見る 

福田のおもしろ数学488〜関数方程式

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

実数から実数への関数$f(x)$が

任意の実数$x,y$に対して

$f(x+f(y))=x+f(f(y))$

を満たしている。また$f(2025)=2026$である。

$f(x)$を求めよ。
    
この動画を見る 

【数Ⅲ】微分法:三角関数の微分公式+演習

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数を微分しよう。
①$y=2\cos\dfrac{5x}{2}\sin\dfrac{x}{2}$
②$y=\sin^3 x$
この動画を見る 

福田のおもしろ数学449〜3次式が常に0以上となるxの範囲

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

実数$a$に対して関数$f(x)$を考える。

$f(x)=x^3-2x^2+(2a-1)x-2a$

$0\leqq a \leqq 1$のとき、

常に$f(x)\geqq 0$となる$x$の範囲を求めよ。
   
この動画を見る 

【数Ⅲ-128】速度と加速度①(直線上の点の運動編)

アイキャッチ画像
単元: #微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(速度と加速度①・直線上の運動編)

地上から真上に投げ上げた物体の時刻$t$における高さが$h(t)=40t-5t^2$で表されるとき、次の問いに答えよ。

①速度$v(t)$、加速度$a(t)$を求めよ。

②最高到達点の高さを求めよ。

③地上に落下するときの速度を求めよ。
この動画を見る 
PAGE TOP