福田の数学〜東北大学2024年理系第5問〜関数の増減と方程式の整数解 - 質問解決D.B.(データベース)

福田の数学〜東北大学2024年理系第5問〜関数の増減と方程式の整数解

問題文全文(内容文):
$\Large{\boxed{5}}$ $x$≧2 を満たす実数$x$に対し、
$f(x)$=$\displaystyle\frac{\log(2x-3)}{x}$
とおく。必要ならば、$\displaystyle\lim_{t \to \infty}\frac{\log t}{t}$=0 であること、および自然対数の底$e$が2<$e$<3 を満たすことを証明なしで用いてもよい。
(1)$f'(x)$=$\displaystyle\frac{g(x)}{x^2(2x-3)}$ とおくとき、関数$g(x)$ ($x$≧2)を求めよ。
(2)(1)で求めた関数$g(x)$に対し、$g(\alpha)$=0 を満たす2以上の実数$\alpha$がただ一つ存在することを示せ。
(3)関数$f(x)$ ($x$≧2)の増減と極限$\displaystyle\lim_{t \to \infty}f(x)$ を調べ、$y$=$f(x)$ ($x$≧2)のグラフの概形を$xy$平面上に描け。ただし(2)の$\alpha$を用いてよい。グラフの凹凸は調べなくてよい。
(4)2≦$m$<$n$ を満たす整数$m$,$n$の組($m$,$n$)に対して、等式
(*)$(2m-3)^n$=$(2n-3)^m$
が成り立つとする。このような組($m$,$n$)をすべて求めよ。
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{5}}$ $x$≧2 を満たす実数$x$に対し、
$f(x)$=$\displaystyle\frac{\log(2x-3)}{x}$
とおく。必要ならば、$\displaystyle\lim_{t \to \infty}\frac{\log t}{t}$=0 であること、および自然対数の底$e$が2<$e$<3 を満たすことを証明なしで用いてもよい。
(1)$f'(x)$=$\displaystyle\frac{g(x)}{x^2(2x-3)}$ とおくとき、関数$g(x)$ ($x$≧2)を求めよ。
(2)(1)で求めた関数$g(x)$に対し、$g(\alpha)$=0 を満たす2以上の実数$\alpha$がただ一つ存在することを示せ。
(3)関数$f(x)$ ($x$≧2)の増減と極限$\displaystyle\lim_{t \to \infty}f(x)$ を調べ、$y$=$f(x)$ ($x$≧2)のグラフの概形を$xy$平面上に描け。ただし(2)の$\alpha$を用いてよい。グラフの凹凸は調べなくてよい。
(4)2≦$m$<$n$ を満たす整数$m$,$n$の組($m$,$n$)に対して、等式
(*)$(2m-3)^n$=$(2n-3)^m$
が成り立つとする。このような組($m$,$n$)をすべて求めよ。
投稿日:2024.04.21

<関連動画>

福田の数学〜中央大学2021年理工学部第4問〜定積分と不等式、極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数の極限#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{4}$自然数$n$に対し,$f_n(x)=x^{-1+\frac{1}{n}}(x\gt 0)$とおく.
また,正の実数$a_n$は$\displaystyle \int_{1}^{a_n}f_n(x)dx=1$満たすものとする.次の問い 
答えよ.

(1)関数$f_n(x)$の不定積分を求めよ.

(2)$a_n$の値と極限$\displaystyle \lim_{n\to\infty}a_n$を求めよ.また,正の実数$b_n$が$\displaystyle \int_{1}^{b_n}f_{n+1}(x)dx=-1$を満たすとき,$b_n$の値と極限$\displaystyle \lim_{n\to\infty}b_n$を求めよ.

(3)2以上の自然数$k$に対して$\displaystyle \int_{k-1}^{k}f_n(x)dx \gt \dfrac{1}{k}$を示し,これを利用して$a_n\lt 4$を証明せよ.

(4)$\displaystyle \int_{1}^{a_n}f_{n+1}(x)dx\lt 1$を示し,これを利用して$a_n\lt a_{n+1}$を証明せよ.

2021中央大理工学部過去問
この動画を見る 

福田のわかった数学〜高校3年生理系056〜微分(1)逆関数の微分

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 微分(1) 逆関数の微分
$y=\sin x  (-\frac{\pi}{2} \lt x \lt \frac{\pi}{2})$
の逆関数の導関数を求めよ。
この動画を見る 

福田の数学〜北海道大学2023年理系第5問〜中間値の定理と関数の増減PART2

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ a,bを$a^2$+$b^2$< 1を満たす正の実数とする。また、座標平面上で原点を中心とする半径1の円をCとし、Cの内部になる2点A(a,0), B(0,b)を考える。
0<θ<$\frac{\pi}{2}$に対してC上の点P($\cos\theta$, $\sin\theta$)を考え、PにおけるCの接線に関してBと対称な点をDとおく。
(1)$f(\theta)$=ab$\cos2\theta$+a$\sin\theta$-b$\cos\theta$とおく。方程式$f(\theta)$=0の解が0<θ<$\frac{\pi}{2}$の範囲に少なくとも一つ存在することを示せ。
(2)Dの座標をa,θを用いて表せ。
(3)θが0<θ<$\frac{\pi}{2}$の範囲を動くとき、3点A,P,Dが同一直線上にあるようなθは少なくとも一つ存在することを示せ。また、このようなθはただ一つであることを示せ。

2023北海道大学理系過去問
この動画を見る 

【数Ⅲ-132】近似式

アイキャッチ画像
単元: #微分とその応用#速度と近似式#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(近似式)
$x≒0$のとき、次の関数について1次の近似式を求めよ。

①$\sqrt{1+3x}$

➁$\log (e+x)$

③$sin31°$の近似値を、1次の近似式を用いて少数第3位まで求めよ。
ただし$\sqrt{3}=1.73,\pi=3.14$とする。
この動画を見る 

福田の数学〜慶應義塾大学看護医療学部2025第1問(2)〜対数不等式

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(2)不等式$2(\log_3 x)^2+2\log_9 x \gt 1$を解くと

$\boxed{イ}$である。

$2025$年慶應義塾大学看護医療学部過去問題
この動画を見る 
PAGE TOP