【受験対策】数学-関数11 - 質問解決D.B.(データベース)

【受験対策】数学-関数11

問題文全文(内容文):
①関数$y=-\dfrac{32}{x}$について,
$x$の変域が$-8\leqq x \leqq -2$のとき,$y$の変域を求めよう.

②関数$y=-\dfrac{1}{2}x^2$について,
$x$の変域が$-4 \leqq x\leqq 2$のとき,$y$の変域を求めよう.

③右の図で,点$A(12,18)$,点$B(0,9)$で,点$C$は線分$OA$上の点で,
点$D$は$BC$の延長と$x$軸との交点である.
曲線$\ell$は関数$y=\dfrac{a}{x}(a \gt 0)$の面積と
$\triangle OCD$の面積が等しいとき,
$a$の値を求めよう.

図は動画内参照
単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①関数$y=-\dfrac{32}{x}$について,
$x$の変域が$-8\leqq x \leqq -2$のとき,$y$の変域を求めよう.

②関数$y=-\dfrac{1}{2}x^2$について,
$x$の変域が$-4 \leqq x\leqq 2$のとき,$y$の変域を求めよう.

③右の図で,点$A(12,18)$,点$B(0,9)$で,点$C$は線分$OA$上の点で,
点$D$は$BC$の延長と$x$軸との交点である.
曲線$\ell$は関数$y=\dfrac{a}{x}(a \gt 0)$の面積と
$\triangle OCD$の面積が等しいとき,
$a$の値を求めよう.

図は動画内参照
投稿日:2016.06.16

<関連動画>

【高校数学】三角比④~90°- θ,180° - θ考え方,イメージ~ 3-4【数学Ⅰ】

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
△ABCの3つの内角$\angle A$、$\angle B$、$\angle C$の大きさをそれぞれA、B、Cとするとき、
次の等式が成り立つことを証明せよ。

sin$\displaystyle \frac{A}{2}$=cos$\displaystyle \frac{B+C}{2}$
この動画を見る 

福田のわかった数学〜高校1年生027〜いろいろなグラフ(1)

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ いろいろなグラフ(1)
$f(x)=\left\{\begin{array}{1}
2x (0 \leqq x \leqq \frac{1}{2})\\
2-2x (\frac{1}{2} \leqq x \leqq 1)\\
\end{array}\right.$

(1)$y=f(x)$のグラフを描け。
(2)$y=f(f(x))$のグラフを描け。
この動画を見る 

三角比と二次不等式

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$0^{ \circ } \leqq \theta \leqq 180^{ \circ }$のとき次の不等式
$4\cos^2\theta-4\sin\theta-1 \lt 0$を満たす$\theta$の範囲は?
この動画を見る 

0.9999999‥‥=1?

アイキャッチ画像
単元: #数Ⅰ#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$A,B$は1桁の自然数である.これを解け.
$\sqrt{0.AAA・・・・・・}=0.BBB・・・・・・$
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜直線の方程式(4)直線群と2次方程式の解、高校2年生

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#2次方程式と2次不等式#2次関数とグラフ#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} 2直線4x+3y+2=0 \cdots①, 5x-2y-3=0 \cdots②の交点を通り、\\
点A(-1,2)を通る直線の方程式を求めよ。\\
\\
{\Large\boxed{2}} 2次方程式x^2-ax-2a-1=0 について次の条件を満たすaの範囲を定めよ。\\
(1)-1 \lt x \lt 2 の範囲に異なる2つの実数解をもつ。\\
(2)少なくとも1つ-1 \lt x \lt 2 の範囲に実数解をもつ。
\end{eqnarray}
この動画を見る 
PAGE TOP