練習問題44 東京工業大学 極限値 数検1級 教員採用試験(数学) - 質問解決D.B.(データベース)

練習問題44 東京工業大学 極限値 数検1級 教員採用試験(数学)

問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty }(\displaystyle \frac{{}_{ 3n } C_n}{{}_{ 2n } C_n})^\frac{1}{n}$の極限値を求めよ。

$\displaystyle \int_{0}^{1}f(x)dx=\displaystyle \lim_{ n \to \infty }\displaystyle \frac{1}{n}\displaystyle \sum_{k=1}^n f(\displaystyle \frac{k}{n})$

出典:東京工業大学 練習問題
単元: #数学検定・数学甲子園・数学オリンピック等#関数と極限#数列の極限#その他#数学検定#数学検定1級#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ n \to \infty }(\displaystyle \frac{{}_{ 3n } C_n}{{}_{ 2n } C_n})^\frac{1}{n}$の極限値を求めよ。

$\displaystyle \int_{0}^{1}f(x)dx=\displaystyle \lim_{ n \to \infty }\displaystyle \frac{1}{n}\displaystyle \sum_{k=1}^n f(\displaystyle \frac{k}{n})$

出典:東京工業大学 練習問題
投稿日:2021.08.13

<関連動画>

福田の数学〜筑波大学2023年理系第5問〜関数の増減と極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#微分法#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ $f(x)$=$x^{-2}e^x$ ($x$>0)とし、曲線$y$=$f(x)$をCとする。また$h$を正の実数とする。さらに、正の実数$t$に対して、曲線C、2直線$x$=$t$, $x$=$t$+$h$、および$x$軸で囲まれた図形の面積を$g(t)$とする。
(1)$g'(t)$を求めよ。
(2)$g(t)$を最小にする$t$がただ1つ存在することを示し、その$t$を$h$を用いて表せ。
(3)(2)で得られた$t$を$t(h)$とする。このとき極限値$\displaystyle\lim_{h \to +0}t(h)$を求めよ。
この動画を見る 

円周率πが無理数であることの証明(数III)

アイキャッチ画像
単元: #関数と極限#積分とその応用#数列の極限#不定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
定理(1947,IvanNiren)
πは無理数である

補題1 
${}^∀a \in \mathbb{R}$ , $\displaystyle \lim_{ n \to \infty } \frac{a^n}{n!}=0$ $(n \in \mathbb{N})$
補題2
$f(x)=\frac{1}{n!}p^nx^n(\pi - x)^n$ $(p,n \in \mathbb{N})$
nが十分大きいとき
$0 < \int_0^{\pi} f(x) dx < 1$
この動画を見る 

『lim』極限の解説します

アイキャッチ画像
単元: #関数と極限#数Ⅲ
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
『lim』極限の解説動画です
この動画を見る 

大学入試問題#392「よく見る積分!!!」 #東京理科大学2011 #定積分 #極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#積分とその応用#関数の極限#定積分#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \lim_{ t \to \infty } \displaystyle \int_{0}^{t} x\ 2^{-x^2} dx$

出典:2011年東京理科大学 入試問題
この動画を見る 

福田のわかった数学〜高校3年生理系011〜極限(10)極限関数

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle\lim_{n \to \infty}\displaystyle \frac{1}{n}\displaystyle\sqrt[n]{{}_{2n}\mathrm{P}_{n}}$を求めよ。
この動画を見る 
PAGE TOP