等比数列 大阪大 - 質問解決D.B.(データベース)

等比数列 大阪大

問題文全文(内容文):
自然数の列
$a_{1},a_{2},a_{3},a_{4},a_{5}$は等比数列
$S=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}$
$S'=a_{1}-a_{2}-a_{3}-a_{4}-a_{5}$
$T=a^2_{1}+a^2_{2}+a^2_{3}+a^2_{4}+a^2_{5}$

(1)
$\displaystyle \frac{T}{S}=S'$を示せ

(2)
$T$が素数のとき、$T$の値は?


出典:1987年大阪大学 過去問
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数の列
$a_{1},a_{2},a_{3},a_{4},a_{5}$は等比数列
$S=a_{1}+a_{2}+a_{3}+a_{4}+a_{5}$
$S'=a_{1}-a_{2}-a_{3}-a_{4}-a_{5}$
$T=a^2_{1}+a^2_{2}+a^2_{3}+a^2_{4}+a^2_{5}$

(1)
$\displaystyle \frac{T}{S}=S'$を示せ

(2)
$T$が素数のとき、$T$の値は?


出典:1987年大阪大学 過去問
投稿日:2019.07.09

<関連動画>

福田のわかった数学〜高校1年生063〜場合の数(2)完全順列

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 場合の数(2) 完全順列
1,2,3,4を1列に並べたものを$a_1a_2a_3a_4$とする。
$a_1\neq 1,a_2\neq 2,a_3\neq 3,a_4\neq 4$を満たす並べ方は何通りあるか。
この動画を見る 

2020年 大阪大 確率漸化式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#確率#数列#漸化式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$Q$は$A$にいる。
サイコロを振って
$1$→時計回りに隣へ
$2$→反時計回りに隣へ
$3~6$→動かない

$n$回目に$A$にいる確率を$P_n$
(1)
$P_2$を求めよ

(2)
$P_{n+1}$を$P_n$で表せ

(3)
$P_n$を求めよ

出典:2020年大阪大学 過去問
この動画を見る 

宇都宮大 漸化式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#宇都宮大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{1}=1$
$a_{n}=-2S_{n}S_{n-1}$
$(n=2,3…)$

(1)
$a_{2},a_{3}$を求めよ

(2)
$0 \lt S_{n} \leqq 1$を示せ

(3)
$a_{n}$を求めよ

出典:2008年宇都宮大学 過去問
この動画を見る 

【数学B/テスト対策】階差数列(一般項)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の数列の一般項$a_n$を求めよ。
(1)$2,5,10,17,26,37…$
(2)$3,4,6,10,18,…$
この動画を見る 

福田の数学〜立教大学2021年理学部第1問(4)〜数列の和と不等式の評価

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ (4)一般項が$a_n=\frac{2}{n(n+2)}$であるような数列$\left\{a_n\right\}$の初項から第n項までの和
を$S_n$とする。$S_n \gt \frac{7}{6}$を満たす最小の自然数$n$は$\boxed{\ \ オ\ \ }$である。

2021立教大学理学部過去問
この動画を見る 
PAGE TOP