福井大(医)漸化式 - 質問解決D.B.(データベース)

福井大(医)漸化式

問題文全文(内容文):
$a_1=1,a_2=3$であり,$n\geqq 2$とする.
$a_{n+1}-\dfrac{4n+2}{n+1}an+\dfrac{4n-4}{n}a_{n-1}=0$

(1)$b_n=a_{n+1}-\dfrac{2n}{n+1}a_n(n\geqq 1)$,$b_n$を$n$で表せ.
(2)$a_n$を求めよ.

福井大(医)過去問
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=1,a_2=3$であり,$n\geqq 2$とする.
$a_{n+1}-\dfrac{4n+2}{n+1}an+\dfrac{4n-4}{n}a_{n-1}=0$

(1)$b_n=a_{n+1}-\dfrac{2n}{n+1}a_n(n\geqq 1)$,$b_n$を$n$で表せ.
(2)$a_n$を求めよ.

福井大(医)過去問
投稿日:2020.12.15

<関連動画>

福田の1.5倍速演習〜合格する重要問題016〜京都大学2016年度理系数学第2問〜素数の性質

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#整式の除法・分数式・二項定理#数学的帰納法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} 素数p,qを用いて\\
p^q+q^p\\
と表される素数を全て求めよ。
\end{eqnarray}

2016京都大学理系過去問
この動画を見る 

室蘭工業大 漸化式基本

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a_1=2,a_{n+1}=\dfrac{1}{2}a_n+\dfrac{4n+2^n}{2^{n+1}}である.
a_n\lt a_{n+1}を満たす最大の自然数nを求めよ.$
この動画を見る 

2022都立入試 整数問題証明(11の倍数)

アイキャッチ画像
単元: #数学(中学生)#数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#数列#数列とその和(等差・等比・階差・Σ)#高校入試過去問(数学)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022都立入試 整数問題証明に関して解説していきます.
この動画を見る 

大阪市立大 奇数の平方の和

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#大阪市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2021大阪市立大学
nは奇数
$S_n=1+3+5+7+\cdots+n$
$T_n=1^2+3^2+5^2+7^2+\cdots+n^2$
①$S_n$,$T_n$をnの式で表せ
②$T_n$がnで割り切れるためのnの条件
この動画を見る 

福田の数学〜明治大学2021年理工学部第2問〜格子点と確率

アイキャッチ画像
単元: #数A#場合の数と確率#確率#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#大学入試解答速報#数学#明治大学#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}} nを正の整数とする。座標平面上の点でx座標とy座標がともに整数であるもの\hspace{40pt}\\
を格子点と呼ぶ。|x|+|y|=2n\ を満たす格子点(x,\ y)全体の集合をD_{2n}とする。\\
(1)D_4は\ \boxed{\ \ あ\ \ }\ 個の点からなる。一般に、D_{2n}は\ \boxed{\ \ い\ \ }\ 個の点からなる。\\
(2)D_{2n}に属する点(x,\ y)で|x-2n|+|y|=2nを満たすものは全部で\ \boxed{\ \ う\ \ }\ 個ある。\\
(3)D_{2n}に属する点(x,\ y)で|x-n|+|y-n|=2nを満たすものは全部で\ \boxed{\ \ え\ \ }\ 個ある。\\
(4)D_{2n}から異なる2点(x_1,\ y_1),\ (x_2,\ y_2)を無作為に選ぶとき、\\
|x_1-x_2|+|y_1-y_2|=2n\\
が成り立つ確率は\ \boxed{\ \ お\ \ }\ である。
\end{eqnarray}

2021明治大学理工学部過去問
この動画を見る 
PAGE TOP