福田の共通テスト直前演習〜2021年共通テスト数学IA問題2[1]。2次関数の問題。 - 質問解決D.B.(データベース)

福田の共通テスト直前演習〜2021年共通テスト数学IA問題2[1]。2次関数の問題。

問題文全文(内容文):
2[1] 陸上競技の短距離100m走では、100mを走るのに
かかる時間(以下、タイムと呼ぶ)は、1歩あたりの
進む距離(以下、ストライドと呼ぶ)と1秒当たりの歩数(以下、ピッチと呼ぶ)に関係がある。
ストライドとピッチはそれぞれ以下の式で与えられる。
ストライド (m/)=100(m)100m(),

(/)=100m()()

ただし、100mを走るのにかかった歩数は、最後の1歩が
ゴールラインをまたぐこともあるので、
少数で 表される。以下、単位は必要のない限り省略する。
例えば、タイムが10.81で、そのときの歩数が48.5であったとき、
ストライドは10048.5より約2.06、ピッチ は
48.510.81 より約4.49である。

(1)ストライドをx、ピッチをzとおく。ピッチは1秒当たりの歩数、
ストライドは1歩あたりの進む距離
なので、1秒あたりの進む距離すなわち平均速度は、
xとzを用いて(m/)と表される。
これよりタイムと、ストライド、ピッチとの関係は=100
表されるので が最大となるとき
にタイムが最もよくなる。ただし、タイムがよくなるとは、
タイムの値が小さくなることである。

の解答群
x+z ①zx ②xz ③x+z2 ④zx2 ⑤xz2

(2)太郎さんは、①に着目して、タイムが最もよくなるスライドと
ピッチを考えることにした。右に表は、太郎さんが練習で
100mを3回走った時のストライドとピッチのデータである。
また、ストライドとピッチにはそれぞれ限界がある。太郎さんの場合、
ストライドの最大値は2.40、ピッチの最大値は4.80である。
太郎さんは、上の表から、ストライドが0.05大きくなるとピッチが0.1小さくなるという
関係があると考えてピッチがストライドの1次関数として
表されると仮定した。このとき、ピッチzはストライドxを用いて
z= x+5  と表される。
②が太郎さんのストライドの最大値2.40とピッチの最大値4.80
まで成り立つと仮定すると、xの値の範囲は
.x2.40

(3)y=とおく。②をy=に代入することにより、
yをxの関数としてあらわすことができる。太郎さんのタイムが最もよくなるストライド
とピッチを求めるためには、.x2.40の範囲で
yの値を最大にするxの値を見つければよい。このときyの値が最大になるのは
x=.のときである。よって、太郎さんのタイムが最もよくなるのは、
ストライドが.のときであり、このとき、ピッチは.
である。また、このときの太郎さんのタイムは①によりである。

の解答群
⓪9.68  ①9.97  ②10.09  ③10.33  ④10.42  ⑤10.55

2021共通テスト数学過去問
単元: #数Ⅰ#大学入試過去問(数学)#2次関数#2次関数とグラフ#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
2[1] 陸上競技の短距離100m走では、100mを走るのに
かかる時間(以下、タイムと呼ぶ)は、1歩あたりの
進む距離(以下、ストライドと呼ぶ)と1秒当たりの歩数(以下、ピッチと呼ぶ)に関係がある。
ストライドとピッチはそれぞれ以下の式で与えられる。
ストライド (m/)=100(m)100m(),

(/)=100m()()

ただし、100mを走るのにかかった歩数は、最後の1歩が
ゴールラインをまたぐこともあるので、
少数で 表される。以下、単位は必要のない限り省略する。
例えば、タイムが10.81で、そのときの歩数が48.5であったとき、
ストライドは10048.5より約2.06、ピッチ は
48.510.81 より約4.49である。

(1)ストライドをx、ピッチをzとおく。ピッチは1秒当たりの歩数、
ストライドは1歩あたりの進む距離
なので、1秒あたりの進む距離すなわち平均速度は、
xとzを用いて(m/)と表される。
これよりタイムと、ストライド、ピッチとの関係は=100
表されるので が最大となるとき
にタイムが最もよくなる。ただし、タイムがよくなるとは、
タイムの値が小さくなることである。

の解答群
x+z ①zx ②xz ③x+z2 ④zx2 ⑤xz2

(2)太郎さんは、①に着目して、タイムが最もよくなるスライドと
ピッチを考えることにした。右に表は、太郎さんが練習で
100mを3回走った時のストライドとピッチのデータである。
また、ストライドとピッチにはそれぞれ限界がある。太郎さんの場合、
ストライドの最大値は2.40、ピッチの最大値は4.80である。
太郎さんは、上の表から、ストライドが0.05大きくなるとピッチが0.1小さくなるという
関係があると考えてピッチがストライドの1次関数として
表されると仮定した。このとき、ピッチzはストライドxを用いて
z= x+5  と表される。
②が太郎さんのストライドの最大値2.40とピッチの最大値4.80
まで成り立つと仮定すると、xの値の範囲は
.x2.40

(3)y=とおく。②をy=に代入することにより、
yをxの関数としてあらわすことができる。太郎さんのタイムが最もよくなるストライド
とピッチを求めるためには、.x2.40の範囲で
yの値を最大にするxの値を見つければよい。このときyの値が最大になるのは
x=.のときである。よって、太郎さんのタイムが最もよくなるのは、
ストライドが.のときであり、このとき、ピッチは.
である。また、このときの太郎さんのタイムは①によりである。

の解答群
⓪9.68  ①9.97  ②10.09  ③10.33  ④10.42  ⑤10.55

2021共通テスト数学過去問
投稿日:2022.01.10

<関連動画>

因数分解

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを因数分解せよ.
x5+x+1
この動画を見る 

息抜き

アイキャッチ画像
単元: #数Ⅰ#2次関数#2次方程式と2次不等式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
a23a+1=0のとき,a6+1a6の値を求めよ.
この動画を見る 

2022東海大(医)ドモアブルの定理の基本

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
(2+2+22i)8を解け.

2022東海大(医)過去問
この動画を見る 

【数Ⅰ】数と式:整式の加法と減法:整理してから代入する

アイキャッチ画像
単元: #数Ⅰ#数と式#式の計算(整式・展開・因数分解)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
A=2x2+xy3zB=3x2+2xy+zC=x23xy+2zであるとき、2(2A+BC)(A+4AC)を計算しよう。
この動画を見る 

【数Ⅰ】三角比の導入から拡張まで【単位円ってどこから出てきたん?】

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
三角比の導入から拡張まで解説していきます.
この動画を見る 
PAGE TOP preload imagepreload image