【高校数学】数Ⅲ-5 複素数の極形式① - 質問解決D.B.(データベース)

【高校数学】数Ⅲ-5 複素数の極形式①

問題文全文(内容文):
次の複素数を極形式で表そう.
ただし,偏角$\theta$は$0\leqq \theta \lt 2\pi$とする.

④$1+i$
⑤$-2$
単元: #数Ⅱ#複素数と方程式#複素数
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の複素数を極形式で表そう.
ただし,偏角$\theta$は$0\leqq \theta \lt 2\pi$とする.

④$1+i$
⑤$-2$
投稿日:2017.03.18

<関連動画>

複素関数論⑯ コーシーの積分定理の応用 *8(1)(2)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#積分とその応用#不定積分#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$ \displaystyle \int_{c}^{} \dfrac{1}{z-2i}\ dz$

(1)$c:$原点を中心とする単位円を求めよ.
(2)$c:-1,1,3i$でつくられる三角形の周を求めよ.
この動画を見る 

07和歌山県教員採用試験(数学:4番 複素数)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$z_0=2$
$z=\displaystyle \frac{1}{2}(\cos\displaystyle \frac{\pi}{3}+i\ \sin\displaystyle \frac{\pi}{3})$
$z_n=z\ z_{n-1}$
$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n|z_{k+1}-z_k|$を求めよ。

出典:和歌山県教員採用試験
この動画を見る 

連続1000日投稿記念 もっちゃんと数学 素数のお話

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
素数に関して解説していきます.
この動画を見る 

大阪教育大 整式の剰余 複素数 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#複素数と方程式#式の計算(整式・展開・因数分解)#複素数#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
(1)$\omega$を方程式$x^2+x+1-0$の解を1つとする.
$(\omega+1)^{12}$の値を求めよ.
(2)$(x+1)^{12}$を$x^3-1$で割った余りを求めよ.

大阪教育大過去問
この動画を見る 

東大 複素数

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a=\cos\dfrac{\pi}{3}+i\sin\dfrac{\pi}{3}$
$\dfrac{(1-a^n)(1-a^{2n})(1-a^{3n})(1-a^{4n})(1-a^{5n})}{(1-a)(1-a^2)(1-a^3)(1-a^4)(1-a^5)}$の値を求めよ.($n$は自然数である)

1970東大過去問
この動画を見る 
PAGE TOP