質問に対する返答です。整数問題,数列の和 - 質問解決D.B.(データベース)

質問に対する返答です。整数問題,数列の和

問題文全文(内容文):
$1 \leqq t< u < v \leqq 6m$
$t+u+v=6m$
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$1 \leqq t< u < v \leqq 6m$
$t+u+v=6m$
投稿日:2018.03.08

<関連動画>

【高校数学】「これ」知ってる? フェルマーが愛した無限降下法という証明方法 #Shorts

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$\sqrt3 $が無理数であることを証明せよ。
この動画を見る 

明治学院大 整数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\dfrac{10^{130}}{13}$の小数第一位を求めよ.

2021明治学院大過去問
この動画を見る 

オーストラリア数学オリンピックAustralian math Olypmpiad

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学オリンピック#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2^{13}+2^{10}+2^x=y^2$
自然数x,yを求めよ.

オーストラリア数学オリンピック過去問
この動画を見る 

徳島大(医)整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数とする.
$n^2(n^2+8)$の正の約数が$10$個である$n$をすべて求めよ.

2019徳島大(医)
この動画を見る 

大学入試問題#106 明治薬科大学(2004) 整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$l,m,n$:自然数
$l \leqq m \leqq n$
$\displaystyle \frac{1}{l}+\displaystyle \frac{1}{m}+\displaystyle \frac{1}{n}=\displaystyle \frac{3}{2}$をみたす組$(l,m,n)$をすべて求めよ。

出典:2004年明治薬科大学 入試問題
この動画を見る 
PAGE TOP