名古屋大学文学部卒のゆる言語学者にオイラーの公式は理解できるのか? - 質問解決D.B.(データベース)

名古屋大学文学部卒のゆる言語学者にオイラーの公式は理解できるのか?

問題文全文(内容文):
オイラーの公式に関して解説していきます.
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
オイラーの公式に関して解説していきます.
投稿日:2021.07.09

<関連動画>

福田の数学〜どれだけの情報を引き出せるかが勝負〜早稲田大学2023年商学部第2問〜球に内接する四面体の体積の最大

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ 中心O、半径1の球に内接する四面体で、その4頂点$T_1$, $T_2$, $T_3$, $T_4$が次の条件(i), (ii)を満たすものを考える。
(i)|$\overrightarrow{T_1T_2}$|=$\sqrt 3$
(ii)$k$($\overrightarrow{OT_1}$+$\overrightarrow{OT_2}$)+$\overrightarrow{OT_3}$+$\overrightarrow{OT_4}$=$\overrightarrow{0}$
ここで、$k$は2未満の正の実数とする。次の設問に答えよ。
(1)線分$T_3T_4$の中点をMとしたとき、$\triangleT_1T_2M$の面積を$k$を用いて表せ。
(2)各$k$に対し、上の条件を満たす四面体の体積の最大値を$V(k)$とする。$V(k)$が最大になるときの$k$の値を求めよ。
この動画を見る 

正十二角形の中の三角形の個数

アイキャッチ画像
単元: #数A#図形の性質#三角形の辺の比(内分・外分・二等分線)#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
正十二角形の3つの頂点を結んでできる三角形の個数は$\boxed{ア}$コである。
そのうち
・2辺を共有する三角形は$\boxed{イ}$コ
・1辺を共有する三角形は$\boxed{ウ}$コ
・辺を共有しない三角形は$\boxed{エ}$コ
・直角三角形は$\boxed{オ}$コ
・正三角形は$\boxed{カ}$コ
・二等辺三角形は$\boxed{キ}$コ
ある。
*図は動画内参照
この動画を見る 

福田の数学〜神戸大学2023年理系第4問〜平面に下ろした垂線ベクトルと四面体の体積

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#図形の性質#空間ベクトル#空間ベクトル#学校別大学入試過去問解説(数学)#空間における垂直と平行と多面体(オイラーの法則)#神戸大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 四面体OABCがあり、辺OA, OB, OCの長さはそれぞれ$\sqrt{13}$, 5, 5である。
$\overrightarrow{OA}$・$\overrightarrow{OB}$=$\overrightarrow{OA}$・$\overrightarrow{OC}$=1, $\overrightarrow{OB}$・$\overrightarrow{OC}$=-11 とする。頂点Oから$\triangle$ABCを含む平面に下ろした垂線とその平面の交点をHとする。以下の問いに答えよ。
(1)線分ABの長さを求めよ。
(2)実数$s$, $t$を$\overrightarrow{OH}$=$\overrightarrow{OA}$+$s\overrightarrow{AB}$+$t\overrightarrow{AC}$ を満たすように定めるとき、$s$と$t$の値を求めよ。
(3)四面体OABCの体積を求めよ。

2023神戸大学理系過去問
この動画を見る 

【数学】オイラーの定理の公式 笑っちゃう覚え方

アイキャッチ画像
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
オイラーの定理の公式 笑っちゃう覚え方に関して解説していきます.
この動画を見る 

【高校数学】 数A-64 直線と平面③

アイキャッチ画像
単元: #数A#図形の性質#空間における垂直と平行と多面体(オイラーの法則)#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
正六面体の各面の対角線の交点を頂点とし,
隣り合う面どうしの頂点を結ぶことによって,
正六面体の中に正八面体ができる.
このとき、,次の場合について,正八面体の体積を求めよう.

①正六面体の1辺の長さが6

②正八面体の1辺の長さが6

図は動画内参照
この動画を見る 
PAGE TOP