福田のわかった数学〜高校2年生026〜円が直線から切り取る弦の長さ - 質問解決D.B.(データベース)

福田のわかった数学〜高校2年生026〜円が直線から切り取る弦の長さ

問題文全文(内容文):
数学$\textrm{II}$ 円が直線から切り取る弦の長さ
円$x^2+y^2=13$ が直線
$kx+2y-4k=0$
から切り取る弦の長さが$2\sqrt5$であるとき、
定数kの値を求めよ。
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 円が直線から切り取る弦の長さ
円$x^2+y^2=13$ が直線
$kx+2y-4k=0$
から切り取る弦の長さが$2\sqrt5$であるとき、
定数kの値を求めよ。
投稿日:2021.05.30

<関連動画>

福田の1.5倍速演習〜合格する重要問題064〜明治大学2019年度理工学部第2問〜円と放物線の位置関係

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)#大学入試解答速報#数学#明治大学
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{2}$ a,bは実数でa>0とする。座標平面上において、円$x^2$+$y^2$=1を$C$とし、放物線y=a$x^2$+bを$D$とする。
(1)放物線$D$の頂点のy座標が正であり、円$C$と放物線$D$の共有点がただ一つであるとき、bの値は$\boxed{\ \ あ\ \ }$である。
(2)放物線$D$の頂点のy座標が負であり、円$C$と放物線$D$の共有点がただ一つであるとき、bの値は$\boxed{\ \ い\ \ }$であり、aの取り得る値の範囲は$\boxed{\ \ う\ \ }$である。
(3)放物線$D$の頂点が円$C$の内部にあり、円$C$と放物線$D$がちょうど2つの共有点をもつとき、bの取り得る値の範囲は$\boxed{\ \ え\ \ }$である。
(4)放物線$D$の頂点が円$C$の外部にあり、円$C$と放物線$D$がちょうど2つの共有点をもつとき、bをaの式で表すとb=$\boxed{\ \ お\ \ }$となり、aの取り得る値の範囲は$\boxed{\ \ か\ \ }$である。

2019明治大学理工学部過去問
この動画を見る 

福田のわかった数学〜高校2年生024〜2つの円の共通接線の求め方

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#円と方程式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 2つの円の共通接線

円$C_1:(x-1)^2+y^2=1$
円$C_2:(x-4)^2+y^2=4$

の共通接線の方程式を求めよ。
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜軌跡(5)動点が2個ある場合の軌跡、高校2年生

アイキャッチ画像
単元: #数A#数Ⅱ#図形の性質#内心・外心・重心とチェバ・メネラウス#図形と方程式#点と直線#円と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 定点$A(2,0),B(4,0)$と円$C:x^2+y^2=9$ がある。
動点$P$が円$C$上を動くとき、$\triangle ABP$の重心$G$の軌跡を求めよ。
この動画を見る 

【数Ⅱ】図形と方程式:円と直線! aを実数とする。円x²+y²-4x-8y+15=0と直線y=ax+1が 異なる2点A,Bで交わっている。 (2)弦ABの長さが最大になるときのaの値を求めなさい。

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#大分大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
aを実数とする。円$x^2+y^2-4x-8y+15=0$と直線$y=ax+1$が 異なる2点A,Bで交わっている。 (2)弦ABの長さが最大になるときのaの値を求めなさい。
この動画を見る 

福田の数学〜慶應義塾大学2021年商学部第1問(2)〜共通接線と面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$
(2)点Aを、放物線$C_1:y=x^2$上にある点で、第1象限($x \gt 0$かつ$y \gt 0$の範囲)
に属するものとする。そのうえで、次の条件を満たす放物線
$C_2:y=-3(x-p)^2+q$ を考える。
1.点Aは、放物線$C_2$上の点である。
2.放物線$C_2$の点Aにおける接線をlとするとき、lは放物線$C_1$の点Aにおける
接線と同一である。
点Aの座標を$A(a,a^2)$とするとき、
$p=\frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}a, q=\frac{\boxed{\ \ ウ\ \ }}{\boxed{\ \ エ\ \ }}a^2$
と表せる。また、直線$l$、放物線$C_2$、および直線$x=p$で囲まれた部分の
面積は$\frac{\boxed{\ \ オ\ \ }}{\boxed{\ \ カキ\ \ }}a^3$ である。

2021慶應義塾大学商学部過去問
この動画を見る 
PAGE TOP