福田の数学〜北海道大学2025理系第4問〜複素数平面上の点の軌跡と2円が共有点をもつ条件 - 質問解決D.B.(データベース)

福田の数学〜北海道大学2025理系第4問〜複素数平面上の点の軌跡と2円が共有点をもつ条件

問題文全文(内容文):
$\boxed{4}$

$a$を正の実数とする。

(1)$a$が$1$でないとき、複素数$z$についての方程式

$a \vert z-1 \vert = \vert (a-2)z +a \vert$

を考える。

この方程式を満たす$z$全体の集合を

複素数平面上に図示せよ。

$2025$年北海道大学理系過去問題
単元: #数Ⅱ#大学入試過去問(数学)#複素数平面#図形と方程式#軌跡と領域#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{4}$

$a$を正の実数とする。

(1)$a$が$1$でないとき、複素数$z$についての方程式

$a \vert z-1 \vert = \vert (a-2)z +a \vert$

を考える。

この方程式を満たす$z$全体の集合を

複素数平面上に図示せよ。

$2025$年北海道大学理系過去問題
投稿日:2025.03.23

<関連動画>

福田の一夜漬け数学〜数学III 複素数平面〜点の軌跡(1)

アイキャッチ画像
単元: #数Ⅱ#複素数平面#図形と方程式#軌跡と領域#複素数平面#図形への応用#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
点zが次の方程式を満たすとき、点zはどのような図形を描くか。
(1)$|z-1|=|z+i|$
(2)$|2z-1-i|=4$
(3)$|2\bar{z}-1+i|=4$
(4)|$z+2|=2|z-1|$
この動画を見る 

福島大 複素数の基本問題

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$
\begin{eqnarray}
&&2023福島大\\
&&Z=1+\sqrt{3}iの時\\
&&1+Z+Z^2+Z^3+Z^4+Z^5

\end{eqnarray}
$
この動画を見る 

東海大(医)虚数の回転

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数C#東海大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\cos\dfrac{13}{12}\pi+i\sin\dfrac{13}{12}\pi$を$a+bi$を中心に$\dfrac{\pi}{6}$回転すると,
$\cos\dfrac{17}{12}\pi+i\sin\dfrac{17}{12}\pi$となる.
実数$a,b$を求めよ.

東海大(医)過去問
この動画を見る 

福田のおもしろ数学200〜3次方程式の解の公式、カルダノの公式

アイキャッチ画像
単元: #複素数平面#複素数平面#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
3次方程式$ax^3+bx^2+cx+d=0 ~~(a\neq0)$の解を導く
この動画を見る 

虚数の3乗根 島根大

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#島根大学#数C
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z^3=i$

島根大過去問
この動画を見る 
PAGE TOP