13東京都教員採用試験(数学:1番 整数問題) - 質問解決D.B.(データベース)

13東京都教員採用試験(数学:1番 整数問題)

問題文全文(内容文):
1⃣ 33x+55y+60z=935を満たす$x,y,z \in \mathbb{ N }$を求めよ。
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
1⃣ 33x+55y+60z=935を満たす$x,y,z \in \mathbb{ N }$を求めよ。
投稿日:2020.08.20

<関連動画>

九州大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$は3の倍数でない整数
$f(x)=2x^3+a^2x^2+2b^2x+1$

(1)
$f(1),f(2)$を3で割った余りは?

(2)
$f(x)=0$は整数解がないことを証明せよ

(3)
$f(x)=0$が有理数解が存在する
$(a,b)$の組をすべて求めよ

出典:2018年九州大学 過去問
この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
Pが7以上の素数なら
$P^4-1$は240
の倍数であること
を示せ
この動画を見る 

【理数個別の過去問解説】2007年度千葉大学 数学 第2問解説

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#千葉大学#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
nは奇数とする。このとき、次のことを証明せよ。
(1)n²-1は8の倍数である。
(2)n⁵-nは3の倍数である。
(3)n⁵-nは120の倍数である。
千葉大学(文理共通)2007年第2問より
この動画を見る 

整数問題の難問!感覚が大事になる問題です

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
6・3^3x +1=7・5^2xを満たす0以上の整数xを求めよ。
この動画を見る 

整数問題の基本

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$a^2=ab+3$を満たす整数
(a,b)の組をすべて求めよ。
この動画を見る 
PAGE TOP