藤田医科大の問題,数字を変えたら程よい難問になった - 質問解決D.B.(データベース)

藤田医科大の問題,数字を変えたら程よい難問になった

問題文全文(内容文):
藤田医科大学みらい入試(改題)

a,b,cは整数
$a^3+b^3-a^2b-ab^2-ac^2-bc^2=704$
を満たすa,b,cを求めよ.

藤田医科大過去問
単元: #大学入試過去問(数学)#学校別大学入試過去問解説(数学)#数学(高校生)#藤田医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
藤田医科大学みらい入試(改題)

a,b,cは整数
$a^3+b^3-a^2b-ab^2-ac^2-bc^2=704$
を満たすa,b,cを求めよ.

藤田医科大過去問
備考:元の問題
https://kaiketsu-db.net/all_unit_post/3mor6myvgjw/
投稿日:2023.11.16

<関連動画>

大学入試問題#507「油断してると沼にはまりがち:良問」 長崎大学(2015) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#長崎大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\frac{\pi}{4}} \displaystyle \frac{\tan\ x}{2-\cos\ 2x} dx$

出典:2015年長崎大学 入試問題
この動画を見る 

福田の数学〜九州大学2023年理系第5問〜媒介変数表示で表された曲線と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上の曲線#学校別大学入試過去問解説(数学)#媒介変数表示と極座標#数学(高校生)#九州大学#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ xy平面上の曲線Cを、媒介変数$t$を用いて次のように定める。
$x$=$t$+2$\sin^2t$, $y$=$t$+$\sin t$ (0<$t$<$\pi$)
以下の問いに答えよ。
(1)曲線Cに接する直線のうち$y$軸と平行なものがいくつあるか求めよ。
(2)曲線Cのうち$y$≦$x$の領域にある部分と直線$y$=$x$で囲まれた図形の面積を求めよ。

2023九州大学理系過去問
この動画を見る 

大学入試問題#153 東京医科大学(2017) 微積の応用

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#微分法#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#東京医科大学#東京医科大学
指導講師: ますただ
問題文全文(内容文):
$x \gt 0$
$f(x)=\displaystyle \int_{1}^{x}\displaystyle \frac{x+4t}{\sqrt{ 3x^4+t^4 }}\ dt$において$f'(x)$を求めよ。

出典:2017年東京医科大学 入試問題
この動画を見る 

福田の数学〜神戸大学2022年理系第5問〜指数方程式と整数解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
a,bを実数、$p$を素数とし、$1 \lt a \lt b$とする。以下の問いに答えよ。

(1)x,y,zを0でない実数とする。$a^x=b^y=(ab)^z$ならば$\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$であることを示せ。
(2)m,nを$m \gt n$を満たす自然数とし、$\frac{1}{m}+\frac{1}{n}=\frac{1}{p}$とする。m,nの値をpを用いて表せ。
(3)m,nを自然数とし、$a^m=b^n=(ab)^p$とする。bの値をa,pを用いて表せ。

2022神戸大学理系過去問
この動画を見る 

#自治医科大(2015)

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#学校別大学入試過去問解説(数学)#自治医科大学
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \frac{1}{1+\sqrt{ 3 }}+\displaystyle \frac{1}{\sqrt{ 3 }+\sqrt{ 5 }}+\displaystyle \frac{1}{\sqrt{ 5 }+\sqrt{ 7 }}+\displaystyle \frac{1}{\sqrt{ 7 }+\sqrt{ 9 }}$

出典:2015年自治医科大学
この動画を見る 
PAGE TOP