大学入試問題#336 横浜国立大学2013 #定積分 - 質問解決D.B.(データベース)

大学入試問題#336 横浜国立大学2013 #定積分

問題文全文(内容文):
$\displaystyle \int e^{-x}\sin^2x\ dx$

出典:2013年横浜国立大学 入試問題
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int e^{-x}\sin^2x\ dx$

出典:2013年横浜国立大学 入試問題
投稿日:2022.10.14

<関連動画>

【数Ⅲ-157】定積分の部分積分法③

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分の部分積分法①)
Q次の定積分の値を求めよ

①$\int_1^{e} (\log x)^2dx$

➁$\int_0^{\frac{\pi}{2}}x^2 \cos^2 x \ dx$
この動画を見る 

大学入試問題#144 東京理科大学(2006) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{a}\displaystyle \frac{dx}{e^x+4e^{-x}+5}=log\sqrt[ 3 ]{ 2 }$が成り立つとき$a$の値を求めよ。

出典:2006年東京理科大学 入試問題
この動画を見る 

大学入試問題#108 弘前大学(2018) 定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#数学(高校生)#弘前大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$a \gt 0$
$\displaystyle \int_{0}^{1}\displaystyle \frac{dx}{(e^{2x}+a)(e^{-2x}+a)}\ $を計算せよ。

出典:2018年弘前大学 入試問題
この動画を見る 

大学入試問題#450「計算の正確性のみを問う問題」 横浜国立大学(2006) #定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#定積分#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{\pi} x^2\sin^3x\ dx$

出典:2006年横浜国立大学 入試問題
この動画を見る 

#55数検準1級1次  過去問 2022年6月 #定積分

アイキャッチ画像
単元: #積分とその応用#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int_{0}^{1}\displaystyle \frac{x^3}{1+x^2}dx$

出典:2022年6月数検準一級一次
この動画を見る 
PAGE TOP