【高校数学】数Ⅲ-69 数列の極限⑤(無限等比数列) - 質問解決D.B.(データベース)

【高校数学】数Ⅲ-69 数列の極限⑤(無限等比数列)

問題文全文(内容文):
次の極限を求めよ。

①$\displaystyle \lim_{n\to\infty}3^n$

②$\displaystyle \lim_{n\to\infty}1^n$

③$\displaystyle \lim_{n\to\infty}\left(-\dfrac{1}{3}\right)^n$

④$\displaystyle \lim_{n\to\infty}(-3)^n$

⑤$\displaystyle \lim_{n\to\infty}\dfrac{3^n+4^n}{5^n}$

⑥$\displaystyle \lim_{n\to\infty}\dfrac{2^n}{1+2^n}$

⑦$\displaystyle \lim_{n\to\infty}\dfrac{5^n+3^n}{2^n-3^n}$

⑧$\displaystyle \lim_{n\to\infty}\dfrac{2^{n+1}-4^{n+1}}{3^n-4^n}$
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
次の極限を求めよ。

①$\displaystyle \lim_{n\to\infty}3^n$

②$\displaystyle \lim_{n\to\infty}1^n$

③$\displaystyle \lim_{n\to\infty}\left(-\dfrac{1}{3}\right)^n$

④$\displaystyle \lim_{n\to\infty}(-3)^n$

⑤$\displaystyle \lim_{n\to\infty}\dfrac{3^n+4^n}{5^n}$

⑥$\displaystyle \lim_{n\to\infty}\dfrac{2^n}{1+2^n}$

⑦$\displaystyle \lim_{n\to\infty}\dfrac{5^n+3^n}{2^n-3^n}$

⑧$\displaystyle \lim_{n\to\infty}\dfrac{2^{n+1}-4^{n+1}}{3^n-4^n}$
投稿日:2018.02.22

<関連動画>

福田のわかった数学〜高校3年生理系001〜極限(1)

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(1)
$\displaystyle\lim_{n \to \infty}\displaystyle \frac{a_n+3}{a_n+1}=2$のとき
$\displaystyle\lim_{n \to \infty}a_n$を求めよ。
この動画を見る 

福田の数学〜東京医科歯科大学2023年医学部第2問PART1〜場合分けされた連立漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#漸化式#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数Ⅲ#東京医科歯科大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ xyz空間において、3点(0,0,0),(1,0,0),(0,1,0)を通る平面$\pi_1$と3点(1,0,0),(0,1,0),(0,0,1)を通る平面$\pi_2$を考える。$x_0$=1, $y_0$=2, $z_0$=-2として、点P${}_0$($x_0$,$y_0$,$z_0$)から始めて、次の手順でP${}_1$($x_1$,$y_1$,$z_1$), P${}_2$($x_2$,$y_2$,$z_2$),... を決める。
・$k$が偶数のとき、$\pi_1$上の点で点P${}_k$($x_k$,$y_k$,$z_k$)からの距離が最小となるものをP${}_{k+1}$($x_{k+1}$,$y_{k+1}$,$z_{k+1}$)とする。
・$k$が奇数のとき、$\pi_2$上の点で点P${}_k$($x_k$,$y_k$,$z_k$)からの距離が最小となるものをP${}_{k+1}$($x_{k+1}$,$y_{k+1}$,$z_{k+1}$)とする。
このとき、次の問いに答えよ。
(1)$\pi_2$に直交するベクトルのうち、長さが1で$x$成分が正のもの$n_2$を求めよ。
(2)$x_{k+1}$,$y_{k+1}$,$z_{k+1}$をそれぞれ$x_k$,$y_k$,$z_k$を用いて表せ。
(3)$\displaystyle\lim_{k\to\infty}x_k$, $\displaystyle\lim_{k\to\infty}y_k$, $\displaystyle\lim_{k\to\infty}z_k$を求めよ。
この動画を見る 

慶應(医)3次方程式 ほぼ文系知識で解けます Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
慶応義塾大学過去問題
$8x^3-6x+1=0$の3つの解をα,β,γ
(1)0<x<1の範囲にある実数解の個数
(2)$\displaystyle\sum_{n=0}^{\infty}(α^n+β^n+γ^n)$
この動画を見る 

福田のわかった数学〜高校3年生理系003〜極限(3)

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 極限(3)
$\lim_{n \to \infty}(2^n+3^n)^{\frac{1}{n}}$ を求めよ。
この動画を見る 

福田のおもしろ数学164〜階乗とn乗の商の極限

アイキャッチ画像
単元: #関数と極限#関数の極限#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle\lim_{n \to \infty}\frac{n!}{3^n}$と$\displaystyle\lim_{n \to \infty}\frac{n!}{n^n}$ を求めなさい。
この動画を見る 
PAGE TOP